如图 c是圆o上任意一点,角acb等于60度oh垂直ab
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 16:10:55
与∠ADC相等的角有两个分别是∠AGD和∠FGC证明:∵AB是直径,AB⊥CD∴弧AD=弧AC∴∠ADC=∠AGD(等弧所对的圆周角相等)∵ADCG内接于圆∴∠FGC=∠ADC(外角等于内对角)如果A
的延长线上取一点E,连接EB,使∠OEB=∠ABC.(1)求证:BE是⊙O的切线(1)证明:∵AB是半圆O的直径,∴∠ACB=90°,∵ODAC,∴∠EDB=90°
过O作OM⊥AB于M.即∠OMA=90°,∵AB=8,∴由垂径定理得:AM=4,∵∠MDC=∠OMA=∠DCO=90°,∴四边形DMOC是矩形,∴OC=DM,OM=CD.∵AD:DC=1:3,∴设AD
半径等于3AC/2连接CE,根据圆的性质AC垂直于CE因为角DAC=角CAE所以三角形ADC与三角形ACE相似所以AC/AE=AD/DC所以AE=3AC所以半径=3AC/2
证明:(1)因为PA⊥平面ABC,且BC⊂平面ABC,所以PA⊥BC.又△ABC中,AB是圆O的直径,所以BC⊥AC.又PA∩AC=A,所以BC⊥平面PAC.(2)由(1)知BC⊥平面PAC,∵BC⊂
如果知道关于15°角的三角比值的话,就很方便了~AB=8∠ADB=90°AD=BE=ABxsin15=8x(√6/4-√2/4)BD=ABxcos15=8x((√6/4+√2/4)DE=BD-AD=4
(1)MN=1/2ABCM=1/2ACCN=1/2BC所以CM+CN=1/2(AC+BC)由图得知CM+CN=MNAC+BC=AB所以MN=1/2AB(2)C在AB上移动无论怎么移都是MN=1/2AB
/>1)∵∠FGC是圆内接四边形ADCG的外角,因此∠FGC等于它的内对角,即∠FGC=∠ADC;2)∵直径AB⊥弦CD,∴AC弧=AD弧,∴∠AGD=∠ADC(等弧上的圆周角相等)
答案是这样的:(1)指出图中与角ACO相等的一个角;∠ACO=∠BCO(2)当点C在圆P什么位置时,直线CA与圆O相切?说明理由.当点在圆O上点D位置时,直线CA与圆O相切连接OP并延长,交圆O于点D
话说第一题.很简单.相似三角形概念.(1)点A和点F同在圆上,且都对应弦BC,所以角A=角F,CD垂直于AB,那么角DCB=角A,所以角DCB=角F,因此,三角形FCB相似于三角形CBG,所以BC/B
∵C、A是圆O的切点∴PA=PC同理,EC=EB∴△PDE的周长等于PA+PB,即8
证明:连接OC∵AC‖OD∴∠A=∠BOD,∠C=∠COD∵OA=OC∴∠A=∠C∴∠COD=∠BOD∴弧CD=弧BD(2)连接OC∵弧CD=弧BD∴∠COD=∠BOD∵OA=OC∴∠A=∠C∵∠CO
因为PA垂直于圆O所在平面,BC在圆O所在平面内,所以PA垂直于BC因为AB是圆O直径,所以AC垂直于BC所以BC垂直于平面APC所以BC垂直于PC所以角PCA为平面ABC与平面PBC所成角在Rt三角
证明:在圆o中连接CO∵AO=CO∴∠OAC=∠OCA∵AC平分∠DAC∴∠DAC=∠OAC∴∠OCA=∠DAC∴AD∥OC∵CD为圆O的切线∴OC⊥DC∴AD⊥DC
因为AB是直经,所以角ACB是直角再答:所以AC垂直于BC再答:且AC属于平面PAC再答:BC属于平面PBC再答:电大校长还有问题吗再问:再答:校长我想进你的学校,开个后门好吗再问:。。。。。再答:这
作B关于MN的对称点F,连OB,OA,根据勾股定理得:OD=8,OC=6,CD=14,连AF与MN相交于一点即为符合题意的P点,过F作MN的平等线交AC的延长线于H,则直角三角形AFH中,FH=DC=
:(1)∵OA^=OB^,∴∠ACO=∠BCO;(2)连接OP,AO,并延长与⊙P交于点D若点C在点D位置时,直线CA与⊙O相切理由:连接AD,OA,则∠DAO=90°∴OA⊥DA∴DA与与⊙O相切即
晕……这都难……你高中大学怎么办……学习还是认真点好啊!偶尔高高竞赛也不错!高中联赛一等奖可以保送呢!链接CB,BD,因为弧AC,AD相等,AB又是直径,所以角CBA等于角DBA,弧BC等于弧BD,则
因为AD垂直CD所以角ADC=90度即角DAC+角DCA=90度1式连接OC因为OA=OC所以角CAO=角ACO2式因为AC平分角BAD所以角DAC=角CAB3式由1式2式3式可得角DCA+角ACB=