如图 bd与ce相交于点a,ad=ac
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:39:09
(1)因为⊿ABC是等边三角形所以AB=BC,∠ABC=∠C=∠BAC=60°又因为BD=CE所以△ABD≌△BCE(SAS)(2)⊿AEF与⊿ABE相似理由:由(1)知:∠BAD=∠CBE,∠BAD
∵△ABC是等边三角形∴AB=BC,∠ABD=∠BCE=60°∵BD=CE∴⊿ABD≌⊿BCE﹙SAS﹚再问:是证这两个三角形相似不是证全等再答:全等一定相似
△AFD≌△CDF∠DAF=∠ECD△ABE≌△CED∠ECD=∠ABE∠DAF=∠ABE∠∠ABE+∠BAF=∠DAF+∠BAF=90°AF⊥BE
BD和CE的关系是BD=CE,BD⊥CE,证明:∵△ABC和△ADE是等腰直角三角形,∴∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE
(1)因为等边三角形ABC所以AB=BC,∠ABD=∠BCE因为BD=CE,∠ABD=∠BCE,AB=BC所以△ABD≌△BCE(2)因为△ABD≌△BCE所以∠BAD=∠CBE因为∠BAC=∠CBA
证明∵等边△ABC中AB=BC∠ABC=∠BCE=60°又有BD=CE∴△ABD≌△BCE
(1)证明:∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=∠ACB=∠BAC=60°,∵BD=CE,∴△ABD≌△BCE.(2)△BDF∽△ADB.理由如下:∵△ABD≌△BCE(已证).∴∠
证明:∵AB=AC,AD=AE,BD=CE∴△ABD≌△ACE(SSS)∴∠BAD=∠CAE,∠B=∠C∵∠CAB=∠BAD-∠CAD,∠EAD=∠CAE-∠CAD∴∠CAB=∠EAD∵∠BFC=∠C
三角形ACE与三角形ABD全等(三边相等)所以角BAD-角CAD=角EAC-角CAD得到角CAB=角EAD设BO与CA相交的点为K,很明显,三角形OKC和三角形AKB是三个角对应相等的相似三角形.说得
BD=CE,AD=AE,AC=AB,三遍相同,所以三角形ABD与三角形ECA相同,所以角CEA与角ADC相同,CE与AD交点为P,角CPD等于角APE,所以角EOD等于角EAD,即角BOC等于角EAD
证明:连接DE、BC∵在△ACE和△ABD中, AE=AD
再答:这个告诉你三线合一证法,因为不确定能不能用,再答:不懂得可以在问哦我,
∵AD/BD=AE/CE=(AD-AE)/(BD-CE)∴AB/AD=AC/AE变形一下就可以得出AB:AC=AD:AE
∵正△ABC∴AB=AC∠BAC=∠C又∵AD=CE∴△ABD≌△CAE∴∠ABD=∠CAE∴∠APD=∠ABP+∠PAB=∠BAC=60°∴∠BPF=∠APD=60°∵Rt△BFP中∠PBF=30°
∵AB=AC,AD=AE∴AB/AD=AC/AE又∠BAC=∠DAE∴△BAC∽△DAE∴∠B=∠D又∠BAM=∠DAM∴△BAN∽△DAM同理△CAN∽△EAM且BN=CN∴EM=DM
证明:(1)∵AB=BC,∠ABD=∠C=60°,BD=CE∴△ABD≌△BCE(2)由(1)△ABD≌△BCE得∠BAD=∠CBE∠FAE=60°-∠BAD=60°-∠CBE=∠ABE∠AFE=∠A
证明:(1)∵ABC,ADE为直角三角形∴∠BAC=∠DAE=90°∠BAC+∠CAD=∠CAD+∠DAE即∠BAD=∠CAE又∵AB=AC,AD=AE∴△BAD≌△CAE(SAS)BD=CE(2)∵
1、∵三角形ABC是等边三角形∴AB=BC,∠ABC=∠C=60°∵BD=CE∴△ABD≌△BCE∴∠ABD=∠CBE在三角形APE中,∠AEP=∠C+∠CBE=60°+∠CBE,∠PAE=∠BAC-
∵AB=AC,BG=CG,∴AG平分角BAC(等腰三角形三线合一),即∠BAG=∠CAG,又∵∠BAG=∠DAF,∠CAG=∠EAF,∴∠EAF=∠DAF,又∵AD=AE,∴AF⊥DE(等腰三角形三线