如图 ab是⊙O的直径,点C是半圆弧的中点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:28:47
如图 ab是⊙O的直径,点C是半圆弧的中点
如图,AB是半圆O 的直径,点c是圆O上一点,连接ac,ab

的延长线上取一点E,连接EB,使∠OEB=∠ABC.(1)求证:BE是⊙O的切线(1)证明:∵AB是半圆O的直径,∴∠ACB=90°,∵ODAC,∴∠EDB=90°

如图,AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.

连BC和OC,∵△ABC和△ACD相似,∴AB比AC=CA比AD,∵AB=4,AD=1,∴AC²=4,∴AC=2∵∠DAC=∠BAC,∠BAC=∠OCA,∴∠OCD=90,四边形OCFA为直

已知 如图,AB是圆O一条弦,点C为弧AB中点,CD是圆O的直径,过C点的直线L交AB所在直线于点E,交圆O于点F.

∵点C为弧AB的中点,CD是圆O的直径\x0d∴CD垂直AB\x0d∴角CEB+角FCD=90度\x0d∵CD是圆O的直径\x0d∴角CFD=90度\x0d∵角FDC+角FCD=90度\x0d∴角CE

已知:如图,AB是⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足是D.

连接OC,∵直线l与⊙O相切于点C,∴OC⊥CD;又∵AD⊥CD,∴AD∥OC,∴∠DAC=∠ACO;又∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB.

如图,AB是⊙O的直径,C是⊙O上一点,AD垂直于过点C的切线,垂足为D.

(1)证明:如图,连接OC,∵DC切⊙O于C,∴OC⊥CF,∴∠ADC=∠OCF=90°,∴AD∥OC,∴∠DAC=∠OCA,∵OA=OC,∴∠OAC=∠OCA,∴∠DAC=∠OAC,即AC平分∠BA

①如图1,已知AB是圆O的直径,点C是圆O上一点,连接BC,AC,过点C作直线CD⊥AB于点D,点E是AB上一点,直线C

话说第一题.很简单.相似三角形概念.(1)点A和点F同在圆上,且都对应弦BC,所以角A=角F,CD垂直于AB,那么角DCB=角A,所以角DCB=角F,因此,三角形FCB相似于三角形CBG,所以BC/B

如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C,

(1)证明:∵∠C=∠P又∵∠1=∠C∴∠1=∠P∴CB∥PD;(2)连接AC∵AB为⊙O的直径,∴∠ACB=90°又∵CD⊥AB,∴BC=BD,∴∠P=∠CAB,又∵sin∠P=35,∴sin∠CA

如图,AB是圆O的直径,点P是弧AB的中点

先自己画个图,标准点,再看题目

如图,AB是⊙O的直径,CD切⊙O于点C,AC平分∠DAB,求证:AD⊥CD.

证明:连接OC,如图所示:∵CD为圆O的切线,∴OC⊥CD,∴∠OCD=90°,∵AC平分∠DAB,∴∠DAC=∠OAC,又OA=OC,∴∠OAC=∠OCA,∴∠DAC=∠OCA,∴AD∥OC,∴∠O

已知:如图,AB是半圆O的直径,C为AB上一点,AC为半圆O的直径,BD切半圆O/于点D,CE⊥AB交半圆O于点F.

1)连接DO'角O'DB是直角,设大圆半径R小圆半径r,则BD平方=O'B平方-DO'平方即为BD平方=(2R-r)平方-r平方整理得BD平方=4R平方-4Rr因为CE垂直AB,可用射影定理得EB平方

如图,AB是⊙O的直径,AC是弦,CD是⊙O的切线,C为切点,AD⊥CD于点D.求证:

证明:(1)∵CD是⊙O的切线,∴∠OCD=90°,即∠ACD+∠ACO=90°.①(2分)∵OC=OA,∴∠ACO=∠CAO,∴∠AOC=180°-2∠ACO,即∠AOC+2∠ACO=180°,两边

如图,AB是⊙O的直径,C是BD的中点,CE⊥AB于E,BD交CE于点F.

(1)证明:∵AB是⊙O的直径,∴∠ACB﹦90°又∵CE⊥AB,∴∠CEB﹦90°∴∠2﹦90°-∠ACE﹦∠A,∵C是BD的中点,∴BC=DC,∴∠1﹦∠A(等弧所对的圆周角相等),∴∠1﹦∠2,

如图,⊙O的直径AB=4,点C在⊙O上,∠ABC=30°,则AC的长是(  )

∵AB是⊙O的直径,∴∠ACB=90°;Rt△ABC中,∠ABC=30°,AB=4;∴AC=12AB=2.故选D.

已知如图,ab是⊙o的直径,od垂直于ab,垂足为o,db交⊙o于点c

图是不是这样?如图做辅助线AC,因为△ABC是圆的内接三角形,所以角ACB是直角又因为∠B是ACB和DOB的公共角,所以RT△ABC∽RT△DOB所以AB/BC=BD/BO即2BO/BC=BD/BO&

如图,AB是⊙O的直径,点C、D、E都在⊙O上,则∠C+∠D=?

90°解析:这个用到了同狐所对的圆周角相等.连接AE,BE,那么∠EAB=∠D(同狐),∠EBA=∠C(同狐)∵∠EAB+∠EBA=90°∴∠C+∠D=90°

如图,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上不同于A,B的一动点.

(1)证明:∵C在圆O上,∴BC⊥AC,∵PA⊥平面ABC,∴BC⊥PA,∵PC⊂平面PAC,∴BC⊥平面PAC,∴BC⊥PC,∴△BPC是直角三角形.(2)如图,过A作AH⊥PC于H,∵BC⊥平面P

如图,AB是⊙O的直径,C,D是⊙O上的点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于

连接BC∵CE是圆切线∴∠ECB=∠CDB=20°(弦切角=所夹弧上的圆周角)∵AB是直径∴∠ACD=90°(半圆上圆周角是直角)∵∠CDB=∠CAB=20°(同弧上圆周角相等)∴∠CBA=90°-∠

如图,AB是⊙O的直径,点D在AB的延长线上,且BD=OB,点C在⊙O上,∠CAB=30°.求证:DC是⊙O的切线.

证明:连接OC、BC,∵AB是⊙O的直径,∴∠ACB=90°.∵∠CAB=30°,∴∠ABC=60°.∵OB=OC,∴△OBC为等边三角形,∴BC=OB=BD,△BCD为等腰三角形,∠CBD=120°