如图 AB是⊙O的直径 点E F在⊙O上 过点E作⊙O的切线 AE平分∠DAB
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 05:10:08
开始移动时,x=30°,移动开始后,∠POF逐渐增大,最后当B与E重合时,∠POF取得最大值,则根据同弧所对的圆心角等于它所对圆周角的2倍得:∠POF=2∠ABC=2×30°=60°,故x的取值范围是
连BC和OC,∵△ABC和△ACD相似,∴AB比AC=CA比AD,∵AB=4,AD=1,∴AC²=4,∴AC=2∵∠DAC=∠BAC,∠BAC=∠OCA,∴∠OCD=90,四边形OCFA为直
过O作OG⊥EF交EF于G.∵EF是⊙O的弦,又OG⊥EF, ∴EG=FG.∵CE⊥EF、DF⊥EF、OG⊥EF, ∴OG∥CE∥DF, ∴CDFE是梯形,结合证得的EG=FG,得:OG是梯形CDFE
连接OAOB所以三角形OAB为等腰三角形又AG=BG所以AB垂直EF,同理CD垂直EF,所以AB//CD
过点O分别作PC、PE的垂线,垂足为M、N.因为∠APC=∠APE,OM⊥PC,ON⊥PE,所以OM=ON(角平分线的性质).所以,CD=EF(垂径定理的推论).
证明:连接OC,如图,∵OA=OC,∴∠OAC=∠OCA,∵∠DAC=∠BAC,∴∠OCA=∠DAC,∴OC∥AD,∵AD⊥EF,∴OC⊥CF,∴EF是⊙O的切线.
作OG⊥EF于G,连接OE,根据垂径定理,可设EG=FG=x,则PE=x+PG,PF=x-PG,又∵PE2+PF2=8,∴(x+PG)2+(x-PG)2=8,整理得2x2+2PG2=8,x2+PG2=
(1)证明:∵∠C=∠P又∵∠1=∠C∴∠1=∠P∴CB∥PD;(2)连接AC∵AB为⊙O的直径,∴∠ACB=90°又∵CD⊥AB,∴BC=BD,∴∠P=∠CAB,又∵sin∠P=35,∴sin∠CA
证明:(1)连OC,则OC=OA,∴∠BAC=∠OCA (1分)∵EF
如图,连接BD,AD.根据已知得B是A关于OC的对称点,所以BD就是AP+PD的最小值,∵AD=2CD,而弧AC的度数是90°的弧,∴AD的度数是60°,所以∠B=30°,∵AB是直径,∴∠ADB=9
(1)连接OC、CD∵OC=OA=OD△OAC、△OCD为等腰三角形∵∠AOC=∠COD∴△OAC≌△OCD∠AOC=∠COD⌒AC=⌒CD∵EF切圆O于点D,AH⊥EF∴∠A=∠BOD⌒BC=2⌒B
连接BC因为EF·EB=EA的平方又因为EA=AC所以EF·EB=AC的平方因为在直角三角形ABC中AC的平方=AD·AB所以EF·EB=AD·AB再问:为什么“EF·EB=EA的平方”“AC的平方=
作AD垂直于BC因为AB=2*2^0.5所以AD=2.即以AD为直径的圆O半径为1.作连线EO和OF角BAC=60度,角BAD=角ABC=45度,所以角OAF=15度.所以角EOF=90+30=120
1)∠CBF=∠A,2)OB⊥EF,3)∠ABE=∠C
(1)AB⊥EF(2)O到EF的距离等于半径(3)∠CEF=∠A
证明:连接OD,∵D是BC的中点,∴∠BOD=∠A.∴OD∥AC.∵EF⊥AC,∴∠E=90°.∴∠ODF=90°.∴EF是⊙O的切线;
1,设AE=x,DC=DE=y;AD为直径,∠DEA=90°,AD=BC,所以AB=DC+2AE=y+2x=DB,EB=y+x;AB=BD,AB²=BD²,(y+2x)²
证明:(Ⅰ)连结AD,∵AB为圆的直径,∴∠ADB=90°,又∵EF⊥AB,∴∠EFA=90°,∴A、D、E、F四点共圆,∴∠DEA=∠DFA.(Ⅱ)∵A、D、E、F四点共圆,∴由切割线定理知BD•B
证明:连接OC、BC,∵AB是⊙O的直径,∴∠ACB=90°.∵∠CAB=30°,∴∠ABC=60°.∵OB=OC,∴△OBC为等边三角形,∴BC=OB=BD,△BCD为等腰三角形,∠CBD=120°