多元线性回归的异方差检验例子
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 08:11:45
有很多检验:相关系数、R2,F统计量及SIG,回归系数的显著性检验(T统计量及SIG)等.
用excelf分布函数
这个问题之前也困扰着我,查了相关的数据,下面是我自己整理的一些,供你参考.从怀特检验看OBS的p值很小,说明存在异方差,修正的方法有好几种,我介绍两种吧,第一种是在回归前先将变量进行对数处理,能够很好
sig要小于0.1是10%水平上显著sig=0说明在1%的水平上显著,比10%水平要求更高
这两个检验你不用管自由度.记住公式就可以.考试的时候套用就行...
%首先输入下列系数:f = [13 9 10 11 12 8];A = [0.4 1.1
t检验用以进行参数显著性假设检验方差分析用以判别影响变量的因素是都是显著的直线回归用以得到两个变量之间的线性关系多元线性回归用来分析一个变量与多个变量之间的关系,它是直线回归的扩展.在线性回归中,t检
简单线性:等式两边都不取对数对数:等式两边都取对数半对数:等式一边取对数显著性检验:单个系数t检验,联合显著性F检验
这句话分两种情况考虑,第一,在一元线性回归的情况下,由于只有一个系数需要检验,所以回归方程的F检验与系数的T检验的结果是一直的.第二,在多元线性回归的情况下,方程总体的线性关系检验不一定与回归系数检验
y=[320320160710320320320160710320];x1=[2.31.71.31.71.71.611.71.71.7];x2=[2.31.71.71.61.71.711.71.71.
对于你这个问题,很简单,你只需要将c=1-a-b带入到你的方程组中去,消去c,只有a,b的.那样就解决了约束条件.
用MINITAB来分析如果是用EXCEL的话,用"工具栏"里的"数据分析"中,选定"回归",再选定数据做分析就可以了.
y=[320320160710320320320160710320];x1=[2.31.71.31.71.71.611.71.71.7];x2=[2.31.71.71.61.71.711.71.71.
1.线性回归和非线性回归没有实质性的区别,都是寻找合适的参数去满足已有数据的规律.拟和出来的方程(模型)一般用来内差计算或小范围的外差.2.Y与X之间一般都有内部联系,如E=m*c^2.所以回归前可收
因为以估计系数=0为原假设,才可以构造出已知分布的检验统计量,再代入具体的样本值,可以确定是否有小概率事件发生,以此来决定是否推翻原假设.
回归系数越大表示x对y影响越大,正回归系数表示y随x增大而增大,负回归系数表示y随x增大而减小.回归方程式^Y=bX+a中之斜率b,称为回归系数,表X每变动1单位,平均而言,Y将变动b单位.
既然你是问的消除,意思就是说你已经发现以方差的问题了,下面谈怎么处理这个问题:先按照原始的回归方法去做,然后得到残差向量(ei),其中ei=Yi-(Yi的估计值),然后将回归得到权重矩阵D=diag(
显著性在你给的条件下没有定义.首先OLS的多元回归,实际上是这样:解方程y=b0+b1x1+b2x2,如果你的数据多于m+1个(我们就以你的这个例子说吧,就是多于3组数据,比如100组),这个时候方程
没必要消除.可以用generalizedmethodofmoments(GMM)或者更简单的generalizedleastsquares(GLS)直接计算异方差.Eviews里应该有built-in
时间序列的话应该先检验数据是不是平稳的在做回归,不平稳的话就没有意义了,可以尝试先做差分在看看是否平稳在做回归