均匀带电球面内外场强
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:55:16
带电量为Q,半径为R.均匀带电球面内外场强及电势分布内部场强E=0球外部等效成球心处一点电荷E=KQ/r^2r>R电势相等球外部等效成球心处一点电荷Φ=KQ/r如果是均匀带电球体,结果与球壳相同
球内场强为0,电势相等为球壳处电势球外的电场和电势分布和把球上电荷看成集中在圆心的点电荷相同
一:球内场强0,球外场强公式同点电荷.二:电场强度的分布同“一”,球心O的电势等于球表面的电势,公式同点电荷.
不可以,这样等效完全没有道理.直接利用高斯定理,垂直平面作一个封闭的圆柱,马上就算出来了
外面是均匀球壳便可以无视,所以内部就无视外侧的球壳,将内侧的球视为在圆心的点.在球外视为球心的点即可
表面内电场E=0表面外视为点电荷场强(高斯定理)希望采纳
场强r=R时,根据高斯定理,电场强度为Q/(4πεr*r)图像就是中心发散(像太阳发出万丈光芒,电势若以无穷远处为电势为0rR时,电势为Q/4πεr等势线就是同心圆高斯定理:电场强度对任意封闭曲面的通
取一圆柱形高斯面半径为rr>R时∮E•dS=E2πrL=λL/εE=λ/2πrεr<R时∮E•dS=E2πrL=ρπr^2L/εE=ρr/2ελ是导体单位长度的电荷
你的问题有一点不太明确,就是圆柱体是否为无限长,因为如果是有限长均匀带电体的话,那么它周围一定空间范围内的电场分布一定是非集合简单化的,不好简单求解.而如果你只关心无穷接近带电体表面的电场强度的话,却
电荷只会分布在球面上,不管是球壳还是实心球.根据高斯定理,球面内部电场强度为0再问:电荷是分布在球面上,但是也应该有电场分布啊,为什么只有球外有电场球内没有呢?再答:高斯定理。。。再问:高斯定理是“E
用高斯定理∫E·dS=q/ε建坐标,平板中心处x=0在内部做一个柱面,EΔS+EΔS=ρ*2*x*ΔS/ε,E=ρ*x/ε在外部做一个柱面,EΔS+EΔS=ρ*b*ΔS/ε,E=ρ*b/(2ε)
对.根据高斯定理E*2S=入*S/真空介质常量E=入/2*真空介质常量与距离无关的(仅限于无限大平面)相信我.希望能帮助你~!
这里求距离球心r处点的场强,球面上的电荷面密度为σ.希望没有影响你学习物理的积极性,但是老师课上没讲的东西,通常都是这样的数学上相当麻烦的内容.这个结论用高斯定理证明真的很简单.
感觉你对面元的理解不够.你觉得面元上有很多点,从每个点到K点的连线的方向都不一样.事实确实是这样的,但是面元是面积趋于0的单元,前述的“不一样”在计算的时候是可以忽略的,也就说面元上任意一点到K点的距
根据电场的高斯定律,电场强度在空间内任意封闭曲面上的面积分值,等于该曲面内电荷量的总和与空间介电常数ε的比值.即:∮EdS=∫(ρ/ε)dV现在我们可以假设最简单的情况,空间内只有一个带电的金属球(电
V1=kQ1/R1+kQ2/R2V2=kQ1/R2+kQ2/R2解上述方程组可得:Q1和Q2再问:首先你是是错的,答案我有就是我不知道怎么来的再答:答案拿出来看看很多所谓答案都错了,但愿这次是我的错了
高斯定理:∫Eds=Σqi 典型应用:利用E的分布对称性,合理选取高斯面,使高斯面上各点E的大小相等,面积分∫Eds就简化为ES,S为高斯面的面积.任意一
这个没错,不过你千万别把那个带电球面当成封闭曲面了,求外部场强时,需要在外部作一个大的球形封闭曲面,包围了所有的电荷.通过通量计算场强.