在锐角三角形abc中,a,b,c分别为角A,B,C的对比,且4sin
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:54:25
sinB/sinA+sinA/sinB=6cosCsin(A+C)/sinA+sin(B+C)/sinB=6cosC(sinAcosC+cosAsinC)/sinA+(sinBcosC+cosBsin
(1)由正弦定理:(2sinA-sinC)cosB=sinBcosC2sinAcosB-sinCcosB=sinBcosCsinBcosC+sinCcosB=2sinAcosBsin(B+C)=2si
在锐角三角形ABC中,a,b,c分别为角A,B,C所对的边,且b=1/2asinC.(1)若tanA=3,求tanB;(2)求tanB的最大值解析:由正弦定理,2sinB=sinAsinC=sinAs
1)y=√3x-1,BC所在直线的方程为y=1tan∠ABC=√3,∠ABC=60°所以:外接圆半径Rb=2RsinBR=AC/(2sin60)=√62)a与c的等差中项为3假设a>ca=6-cb^2
是钝角三角形因为角A一定大小90度
因为a>b>c所以sina>sinb>sinc由二倍角sina>sinb>sinc,sina^2>sinb^2>sinc^21-cos2a>1-cos2b因为角为钝角,所以平方后要变号cos2a^2>
2对因为sinA>sinB>0cos2A=1-2(sinA)^2cos2B=1-2(sinB)^2所以cos2A
详细解答请见附件图片(点击可恢复原来大小)
B因为:A=B-C所以:A+C=B又因为:A+B+C=180度所以:B=90度
√3sinA=2sinCsinA因为sinA≠0,所以sinC=√3/2因为锐角三角形,C=60度S=0.5absinC=ab√3/4=3√2/2ab=6c^2=a^2+b^2-2abcosC7=a^
√3tanA-tanB=1+tanAtanB√3tan(A-B)=1tan(A-B)=√3/3A-B=30A=30+BA再问:sin(A+B)=sinC0
C903B>90B>30A>60A
题目本身结论不成立.如三边的长度为3,4,5,满足4的平方+5的平方大于3的平方,但它是直角三角形.可加条件“c为最长边”使结论成立.用余弦定理可证.
∵b+c>a,即20-a>a∴a<10又∵a,b,c均为整数且a>b>c,a+b+c=20.∴有四种情况,即①a=9,b=8,c=3②a=9,b=7,c=4,③a=9,b=6,c=5④a=8,b=7,
sin2b*cosb/sina=sin2b*cosb/(2sinbcosb)=sin2b/2sinb=sina/2sinb再问:太给力了,你的回答完美解决了我的问题!
由正弦定理:sinA/BC=sinB/AC其中,sinB=sin2A=2sinAcosA,BG=1则,sinA=2sinAcosA/ACAC=2cosA锐角A,BA的范围是(0,45°)cosA范围是
解答如下:由A+B+C=180°和C=2B得:A+3B=180;△ABC为锐角三角形,则由0<C<90°和C=2B知0<B<45°;由0<A<90°和A+3B=180知30°<B<60°∴30°<B<
/>先确定∠B的范围∠A=2∠B
任两边之和大于第三边,任两边之差小于第三边.加之三角形是锐角三角形.可得C的最小值是2²-1²,再开方,为根号3,约1.7C的最大值为2²+1²,再开方,为根号
由余弦定理得:①a²=b²+c²-2bccos∠A,∴﹙√21﹚²=b²+c²-2bc×﹙-½﹚,由△面积公式得:②S=½