在菱形abcd中,已知点e在bc上,角b等于70度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 07:55:07
在菱形abcd中,已知点e在bc上,角b等于70度
已知:如图,菱形ABCD中,点E、F分别在边BC、CD上,且∠EAF=∠B,求证:AE=AF

作AM⊥BC于M,AN⊥CD于N易证AM=AN,∠MAN+∠C=180°又∠B+∠C=180°∴∠MAN=∠B=∠EAF∴∠EAM=∠FAN又AM=AN∴Rt△AEM≌Rt△AFN∴AE=AF

在菱形ABCD中,点E G在AC上,点F H在BD上且AE=CG,BF=DH.求证:四边形EFGH是菱形

设AC、BD相交于O∵菱形ABCD,∴OA=OC,OB=OD,AC⊥BD又AE=CG,BF=DH,∴OE=OG,OF=OH∴△EOF≌△GOH≌△EOH≌△GOF,∴EF=FG=GH=HE∴四边形EF

在菱形ABCD中,角B=60°,点E,F分别在BC,CD上,四边形AECF的面积是菱形ABCD面积的二分之一

因为四边形AECF的面积是菱形ABCD面积的二分之一所以BE+FD=EC+CF连AEAF易知三角形ABE与三角形ACF全等所以AE=AF∠EAF=60'所以三角形AEF为等腰三角形所以∠AFE=∠AC

已知:如图,在菱形ABCD中,E、F分别是BC、CD的中点.

(1)证明:菱形ABCD中,AB=BC=CD=AD,∠B=∠D,∵E、F分别是BC、CD的中点,∴BE=DF.在△ABE和△ADF中AB=AD,∠B=∠D,BE=DF,∴△ABE≌△ADF(SAS).

已知,如图,在菱形ABCD中,E,F分别是CB,CD上的点,且BE=DF.(1)求证:AE=AF(2)若∠B=60°,点

证明:1、∵菱形ABCD∴AD=AB,∠B=∠D∵BE=DF∴△ADF全等于△ABE(SAS)∴AE=AF2、连接EF、AC∵菱形ABCD∴AB=BC=AD=CD,∠B=∠D∵∠B=60∴∠D=60∴

已知,如图,菱形ABCD中,∠B=60°,点E、F分别在边BC,CD上,且∠EAF=60° 求证△AEF是等边三角形

连AC,∵四边形ABCD是菱形,且∠B=60度,∴AC=AB=AD,∠D=∠B=∠ACB=∠DAC=60度∵∠EAF=60度∴∠DAF=∠CAE=60度-∠FAC因此△DAF≌△CAE∴AE=AF于是

菱形ABCD中,点E、F分别在BC、CD边上,且∠EAF=∠B

(1)连接AC.不难得出以下结论:∠CAB=∠ACD=60°,AC=AB,因为∠EAF=∠B=60°,所以,∠EAF-∠EAC=∠BAC-∠EAC,即∠CAF=∠BAE.所以,三角形ABE全等三角形A

已知:如图,在正方形ABCD中,点E、F在BD上,且BF=DE,求证:四边形AECF是菱形

连接AC,在正方形ABCD中AO=CO,BO=DO(正方形对角线互相平分)又因为:BF=DE,所以:BO-BF=DO-DE,即OF=OE.所以四边形AECF是平行四边形(对角线互相平分的四边形是平行四

如图所示,在菱形ABCD中,E、F分别是BC、CD上的点,且已知∠B=∠EAF=60°,证明:∠CEF=∠BAE.

证明:连接AC,∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等边三角形,∴AB=AC,∠ACB=∠B=60°,∵∠BCD=180°-∠B=120°,∴∠ACF=∠BCD-∠ACB

已知:在菱形ABCD中,E、F分别是BC、CD上的点,且CE=CF

菱形中∠ABE=∠ADF,AB=AD,BE=DF,边角边,△ABE≌△ADF菱形中∠BAD=∠BCD=130°,∠BAE=∠GAF=25°,∠DGC=∠EAD=130°-25°=105°,∠AHC=∠

已知,如图,在菱形ABCD中,AE⊥BC于点E,且BE等于CE,AD=2. 1.求BD的长. 2.菱形ABCD的面积.

ad=bcad=2be=1,ab=2用勾股定理可得bd=根号13be=1,ab=2,用勾股定理可得ae=根号3abcd=2*根号3=2根号3

已知在菱形ABCD中,AE⊥BC于点E,EC=1,AE=(5/13)AB,求菱形的周长与面积

因为AE/AB=5/13所以可以设AE=5k,AB=13k,(k为系数),由勾股定理得BE=12k又因为菱形4边相等,所以BC=12k,所以EC=13k-12k=k=1则可得菱形边长为13,高为5所以

如图1示,在菱形ABCD和菱形BEFG中,点A、B、E在同一直线上,G在BC上,连接DF,

1.垂直,√3按照小聪的思路作完图之后,GF平行于AB平行于CD,P又是中点,角HDP=角GFP,角HPD=角GPE,P为中点,所以三角形HDP全等于三角形GFP,这样DH=GF,所以CH=CG,则有

已知:如图,在菱形ABCD中,过AB的中点E作EF⊥AC,交AD于点M,交CD的延长线于点F.

(1)证三角形AEM全等三角形DEF,得,AM=DF,因EM//BD,MB//DF,所以四边形FDBM是平行四边形,所以MB=DF,所以AM=MB,即M是AB中点(2)因AD=2DF=4,所以菱形AB

已知:在菱形ABCD中,E,F在AC上,且AE=CF.求证四边形DEBF是菱形

连接BD交AC于点OAC⊥BDAO=COBO=DO∵AE=CF∴EO=FO所以BEDFO组成的五个直角三角形全等∴BE=ED=DF=FB∴DEBF是菱形

如图,菱形ABCD中,∠B=60°,点E在边BC上,点F在边CD上.

(2)连接AC,∵四边形ABCD是菱形,∠B=60°∴AB=BC,∠D=∠B=60°,∠ACB=∠ACF,∴△ABC是等边三角形,∴AB=AC,∠ACB=60°,∴∠B=∠ACF=60°,∵AD∥BC

已知,如图,在菱形ABCD中,E.F分别是CB,CD上的点,且BE=AF

(1)AB=AD,BE=AF,∠ABE=∠ADF,所以△ABE≌△ADF所以AE=AF(2)连接AC,BD,点E.F分别为BC.CD的中点,所以EF=1/2BD,又BD=√3AB,所以EF=√3/2A