在菱形ABCD中,E是CD的中点,角B=120°

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 16:26:29
在菱形ABCD中,E是CD的中点,角B=120°
在菱形ABCD中,角B=60°,点E,F分别在BC,CD上,四边形AECF的面积是菱形ABCD面积的二分之一

因为四边形AECF的面积是菱形ABCD面积的二分之一所以BE+FD=EC+CF连AEAF易知三角形ABE与三角形ACF全等所以AE=AF∠EAF=60'所以三角形AEF为等腰三角形所以∠AFE=∠AC

已知:如图,在菱形ABCD中,E、F分别是BC、CD的中点.

(1)证明:菱形ABCD中,AB=BC=CD=AD,∠B=∠D,∵E、F分别是BC、CD的中点,∴BE=DF.在△ABE和△ADF中AB=AD,∠B=∠D,BE=DF,∴△ABE≌△ADF(SAS).

如图,在菱形ABCD中,E,F分别是BC,CD的中点

由AB=BC=2BE(菱形邻边相等),角AEB=90度可知角BAE=30度.故角B=60度.其余三个角则可用平行四边形性质求,角D=60度,角BAD=角BCD=120度

如图,在四边形ABCD中,ad=bc,E,F,G,H分别是AB,CD,AC,BD的中点.求证:四边形EGFH是菱形

证明:∵E是AB的中点,G是AC的中点∴EG是△ABC的中位线∴EG=½BC,EG//BC∵H是BD的中点,F是CD的中点∴HF是△BCD的中位线∴HF=½BC,HF//BC∴EG

如图在四边形ABCD中,AD=BC,点E F G H分别是AB CD AC BD的中点求证四边形EGFH是菱形

证明:∵E是AB的中点,G是AC的中点∴EG是△ABC的中位线∴EG=½BC,EG//BC∵H是BD的中点,F是CD的中点∴HF是△BCD的中位线∴HF=½BC,HF//BC∴EG

如图,在菱形ABCD中,点E是CD的延长线上的一点,且EA=EB,EA⊥EB,求∠DAB的度数

过E作EF⊥AB于F,∵ΔABE是等腰直角三角形,∴EF=1/2AB,过A作AH⊥CD交CD的延长线于H,则四边形AHEF是矩形,∴AH=EF=1/2AB=1/2AD,sin∠ADH=AH/AD=1/

如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形

已经可以证明EFGH是平行四边形GH=1/2ADEF=1/2ADGH=EFGF=1/2BCEH=1/2BCGF=EHEFGH是平行四边形只需要满足BC=AD就可以使得GH=EF=GF=EH

如图,在矩形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点.求证:四边形EFGH是菱形.

证明:连接BD,AC.∵矩形ABCD中,E、F、G、H分别是AD、AB、BC、CD的中点,∴AC=BD,∵EF为△ABD的中位线,∴EF=12BD,EF∥BD,又GH为△BCD的中位线,∴GH=12B

如图,在四边形ABCD中,AB//CD,AC⊥BC,E是AB的中点.△AED是等边三角形.求证BCDE是菱形

连接CE,∵AC⊥BC,E是AB的中点,∴CE=1/2AB=AE=EB,∵△AED是等边三角形,∴AE=DE,∠AED=60º,∴DE=CE,∵AB‖CD,∴∠AED=∠CDE=60&ord

在四边形ABCD中,AB‖CD,BC=CD,AD⊥BD,E是AB的中点,求证:四边形BCDE是菱形

思路参考:由DE是直角三角形ABD斜边上的中线,知EB=ED,∠EBD=∠EDB,由AB‖CD知∠EBD=∠CDB,两直线平行内错角相等.由BC=CD知∠CBD=∠CDB,BD为公共边由角边角相等知:

已知:在菱形ABCD中,E、F分别是BC、CD上的点,且CE=CF

菱形中∠ABE=∠ADF,AB=AD,BE=DF,边角边,△ABE≌△ADF菱形中∠BAD=∠BCD=130°,∠BAE=∠GAF=25°,∠DGC=∠EAD=130°-25°=105°,∠AHC=∠

已知,如图,在四边形ABCD中,AB=CD,E、F、G、H分别是BD、AC、AD、BC的中点,求证:四边形EHFG是菱形

证明:∵E、H分别为BD,BC的中点∴EH‖CD,EH=1/2CD同理可得FG‖CD,FG=1/2CD∴EH‖FG,EH=FG∴四边形EHFG是平行四边形同理可得FH=1/2AB∵AB=CD∴EH=E

如图,在矩形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,问四边形EFGE是否是菱形?理由

证明:∵矩形ABCD∴∠A=∠B=∠C=∠D=90,AB=CD,AD=BC∵E是AB的中点,G是CD的中点∴AE=BE=AB/2,CG=DG=CD/2∴AE=BE=CG=DG∵F是BC的中点,H是AD

在菱形ABCD中,E、F分别是BC和CD的中点,且AE⊥BC,AF⊥CD,那么∠EAF等于(  )

连接AC,由题意可知,△ABC是等边三角形,AE平分∠BAC,所以∠EAC=30°;同理可得,∠FAC=30°,所以∠EAF=∠EAC+∠FAC=60°.故选C.

如图,在菱形ABCD中,E,F分别是AC,CD的中点,如果菱形ABCD的周长是16,那么EF的长是()A 1 B 2 C

∵ABCD是菱形∴AD=16÷4=4∵E,F分别是AC,CD的中点∴EF=1/2AD=2∴选B

如图,在菱形ABCD中,E.F分别在BC.CD上,且△AEF是等边三角形,AE=AB,则∠BAD的

∠D+∠BCD=180°60°+∠D+(180°-∠BCD)/2=180°∴∠BCD=100°,∠D=80°∴∠BAD=100°再问:60°+∠D+(180°-∠BCD)/2=180°这是啥意思勒再答

已知,如图,在菱形ABCD中,E.F分别是CB,CD上的点,且BE=AF

(1)AB=AD,BE=AF,∠ABE=∠ADF,所以△ABE≌△ADF所以AE=AF(2)连接AC,BD,点E.F分别为BC.CD的中点,所以EF=1/2BD,又BD=√3AB,所以EF=√3/2A

如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形,四边形ABCD还应

条件是BC=AD因为HE‖=1/2BC‖=GF,同理GH‖=EF,故EFGH为平行四边形,要使四边形EFGH是菱形,则EF=GH,故BC=AD