在菱形ABCD中,E是CD的中点,角B=120°
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 16:26:29
因为四边形AECF的面积是菱形ABCD面积的二分之一所以BE+FD=EC+CF连AEAF易知三角形ABE与三角形ACF全等所以AE=AF∠EAF=60'所以三角形AEF为等腰三角形所以∠AFE=∠AC
(1)证明:菱形ABCD中,AB=BC=CD=AD,∠B=∠D,∵E、F分别是BC、CD的中点,∴BE=DF.在△ABE和△ADF中AB=AD,∠B=∠D,BE=DF,∴△ABE≌△ADF(SAS).
由AB=BC=2BE(菱形邻边相等),角AEB=90度可知角BAE=30度.故角B=60度.其余三个角则可用平行四边形性质求,角D=60度,角BAD=角BCD=120度
证明:∵E是AB的中点,G是AC的中点∴EG是△ABC的中位线∴EG=½BC,EG//BC∵H是BD的中点,F是CD的中点∴HF是△BCD的中位线∴HF=½BC,HF//BC∴EG
证明:∵E是AB的中点,G是AC的中点∴EG是△ABC的中位线∴EG=½BC,EG//BC∵H是BD的中点,F是CD的中点∴HF是△BCD的中位线∴HF=½BC,HF//BC∴EG
过E作EF⊥AB于F,∵ΔABE是等腰直角三角形,∴EF=1/2AB,过A作AH⊥CD交CD的延长线于H,则四边形AHEF是矩形,∴AH=EF=1/2AB=1/2AD,sin∠ADH=AH/AD=1/
已经可以证明EFGH是平行四边形GH=1/2ADEF=1/2ADGH=EFGF=1/2BCEH=1/2BCGF=EHEFGH是平行四边形只需要满足BC=AD就可以使得GH=EF=GF=EH
证明:连接BD,AC.∵矩形ABCD中,E、F、G、H分别是AD、AB、BC、CD的中点,∴AC=BD,∵EF为△ABD的中位线,∴EF=12BD,EF∥BD,又GH为△BCD的中位线,∴GH=12B
连接CE,∵AC⊥BC,E是AB的中点,∴CE=1/2AB=AE=EB,∵△AED是等边三角形,∴AE=DE,∠AED=60º,∴DE=CE,∵AB‖CD,∴∠AED=∠CDE=60&ord
思路参考:由DE是直角三角形ABD斜边上的中线,知EB=ED,∠EBD=∠EDB,由AB‖CD知∠EBD=∠CDB,两直线平行内错角相等.由BC=CD知∠CBD=∠CDB,BD为公共边由角边角相等知:
菱形中∠ABE=∠ADF,AB=AD,BE=DF,边角边,△ABE≌△ADF菱形中∠BAD=∠BCD=130°,∠BAE=∠GAF=25°,∠DGC=∠EAD=130°-25°=105°,∠AHC=∠
证明:∵E、H分别为BD,BC的中点∴EH‖CD,EH=1/2CD同理可得FG‖CD,FG=1/2CD∴EH‖FG,EH=FG∴四边形EHFG是平行四边形同理可得FH=1/2AB∵AB=CD∴EH=E
证明:∵矩形ABCD∴∠A=∠B=∠C=∠D=90,AB=CD,AD=BC∵E是AB的中点,G是CD的中点∴AE=BE=AB/2,CG=DG=CD/2∴AE=BE=CG=DG∵F是BC的中点,H是AD
连接AC,由题意可知,△ABC是等边三角形,AE平分∠BAC,所以∠EAC=30°;同理可得,∠FAC=30°,所以∠EAF=∠EAC+∠FAC=60°.故选C.
四边形ABCD两对角线AC、BD相等
∵ABCD是菱形∴AD=16÷4=4∵E,F分别是AC,CD的中点∴EF=1/2AD=2∴选B
∠D+∠BCD=180°60°+∠D+(180°-∠BCD)/2=180°∴∠BCD=100°,∠D=80°∴∠BAD=100°再问:60°+∠D+(180°-∠BCD)/2=180°这是啥意思勒再答
(1)AB=AD,BE=AF,∠ABE=∠ADF,所以△ABE≌△ADF所以AE=AF(2)连接AC,BD,点E.F分别为BC.CD的中点,所以EF=1/2BD,又BD=√3AB,所以EF=√3/2A
条件是BC=AD因为HE‖=1/2BC‖=GF,同理GH‖=EF,故EFGH为平行四边形,要使四边形EFGH是菱形,则EF=GH,故BC=AD
1/3+1/12=5/12=5:12再问:恩,还有12:5