在系统P中构造下面推理的证明 今天是周六
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 15:34:05
前提:┐(p∧(┐q)),┐q∨r,┐r┐q∨r,┐r=>┐q----1┐(p∧(┐q))=>┐p∧q-----2由1,2得┐q&┐p∧q=>┐p结论为┐p
证明:①p→q前提引入②非q前提引入③非p①②拒取式④非r→p前提引入⑤r③④拒取式
p^qprp^qqsrsr^s注:换行表示“推出”关系,分段表示上一段演绎结束
1>t合取r规则p;2》t规则p由1》化简;3》r规则p由1》化简;4》s等值于t规则p;5》t蕴含s规则t由4》等值6》s规则t由2》5》假言推论7》q等值s规则p8》s蕴含q规则t由7》等值9》q
关键就是把握:┐r∨p等价于r->p证明:(1)p∨┐r,题中假设(2)┐r∨p,(1)交换律(3)r->p,(2)等价变换(4)p->(q->s),题中假设(5)r->(q->s),(3)(4)三段
P:我去看望老张Q:我去看望老李B:我要带些书C:我要去新华书店问题符号化为:非(P∧Q)(可以两个人都不去看但不能同时看两个人)P->BB->C非C->P==>非C->Q1B->CP规则2P->BP
1、p->q前提引入2、p附加前提引入(结论为蕴含式时可以用)3、q1、2假言推理.4.pvq2,3附加律所以就可以证出前提是p蕴含q结论是p蕴含(p且q).再问:结论是p合取q不是p析取q?再答:哦
你可能写错了,┐(q∨r)应为┐(q∧r),否则推不出结论. 前提:┐p∨q,┐(q∧r),r 结论:┐p 推理如下: 1)r前提引入 2)┐(q∧r)前提引入 3)┐q∨┐r2)等价置换
P:乌鸦Q:北京鸭R:白色没有白色的乌鸦:P→(非R)北京鸭是白色的:Q→R{P→(非R)∧Q→R}推出Q→非P再问:能写完整些吗?不懂再答:哪地方不懂?再问:==全部。。。。。,自然推理系统不是先要
1.p:今天是星期一;q:进行英语考试;r:进行离散数学考试;t:英语老师开会前提:p--->(qVr);t--->『q;p/\t结论:r证明:1.p/\t前提引入2.p1化简规则3.t1化简规则4.
先将简单命题符号化令p:今天是星期六,q:我们到颐和园去玩,r:我们到圆明园去玩,s:颐和园游人太多.前提:p→(q∨r),s→┐q,p,s结论:r证明:①p→(q∨r)前提引入②p前提引入③q∨r①
p合取q应是p析取q吧.证明如下:1、p析取q前提2、p蕴含非r前提3、s蕴含t前提4、非s蕴含r前提5、非t前提6、非s35否定后件式7、r46肯定前件式8、非p27否定后件式9、q18否定肯定式
①{1}p→s②{2}q→r③{3}┐r④{4}p∨q/∴s⑤{2,3}┐q②③→-⑥{2,3,4}p④⑤∨-⑦{1,2,3,4}s①⑥证毕再问:和书上例题的格式不太一样啊,我一点都不会。举个例子,书
我看了你的追问,有2,3合取引入,就可以得pvq.因为p真值为1,q的真值也为1,所以p∧q的真值也是1,就可以得到p∧q.我发现你第二题也好像打错啦?qs应该改为ps,或者是p->q改为q->p,要
1、如果我学习,那么我数学不会不及格;如果我不热衷于玩游戏机,那么我将学习;但我数学不及格.因此我热衷于玩游戏机.2.张三或李四的彩票中奖了;如果张三的彩票中奖了,那么你是知道的;如果李四的彩票中奖了
由条件一知侦探必精通逻辑推理,但精通逻辑推理未必是侦探.由条件二知只存在两种职业,这里可理解为只存在三种人:一、精通逻辑推理的侦探,二、精通逻辑推理的清洁工,三、不精通逻辑推理的清洁工楼主你的有问题哈
还是由我来说吧,、冠汉勇≡
设P(x):x彩票中奖,S(x):我知道x中奖,a:张三,b:李四,c:王五根据题目可以得到条件:P(a)vP(b)P(a)→S(a)P(b)→P(c)┐S(a)结论:P(b)∧P(c)证明:(1)┐