在等边三角形abc中,BD是AC边上的高,BE平分∠CBD交AC于点E

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 21:02:07
在等边三角形abc中,BD是AC边上的高,BE平分∠CBD交AC于点E
已知△ABC为等边三角形,在图a中,点M是线段BC上任意一点

∠BQM=60°.图B中也成立.主要是找到一对全等三角形△ABM和△BCN,就知道∠BNC=∠BMQ,就可以证明△BQM和△BNC相似,就可以推出∠BQM等于60°

如图,在等边三角形ABC中,M,N分别是边AB,AC的中点,D为MN上任意一点,CD,BD的延长

过点D作DS∥BM,DT∥CN交BC于S、T,易证MDSB、NDTC都是平行四边形,∵M、N是中点∴MN=1/2BCMD+DN=1/2BCBS+TC=1/2BC∴ST=1/2BC∵△DST是等边三角形

如图,在等边三角形ABC中,D,E,F分别是BC,AC,AB上的点,且AF=BD=CE,求证:△DEF是等边三角形

证明:∵△ABC是等边三角形∴∠A=∠B=60°,AB=AC=BC∵AF=BD=CE∴AE=BF∴△AEF≌△BFD∴EF=FD同理可得ED=FD∴△EDF是等边三角形

已知:△ABC中,∠ACB=90°,AD=BD,∠A=30°,求证:△BDC是等边三角形.

证明:∵△ABC中,∠ACB=90°,∠A=30°(已知),∴∠A+∠B=90°(直角三角形两锐角互余),∴∠B=90°-∠A=90°-30°=60°,∵△ABC中,∠ACB=90°,∠A=30°(已

在△ABC中,已知a/cosA=b/cosB=c/cosC,求证这个三角形是等边三角形

证明:由三角形正弦定理得a/sinA=b/sinB=c/sinC所以a/b=sinA/sinB=cosA/cosB得sinAcosB-cosAsinB=0所以sin(A-B)=0所以A-B=π*n(n

8.已知:如图,在等边三角形ABC中,M、N分别是AB、AC的中点,D是MN上任意一点,CD、BD的延长线分别与AB、A

2005•湖州)如图,在等边△ABC中,M、N分别是边AB,AC的中点,D为MN上任意一点,BD,CD的延长线分别交于AB,AC于点E,F.若=6,则△ABC的边长为(  )A、B、C、D

如图,C是线段BD上一点,在BD的同侧作等边三角形ABC和等腰三角形ECD,且使B,A,E在同一直线上,求证AE=BD

过E作AC的平行线设于BC的延长线交于F,则∠EFD=∠ACB=∠ABC=60度∠EDF=180度-∠EDC=180度-∠ECD=∠ECB又EC=ED,所以△EDF≌△ECB,即BC=DF因∠EAC=

C是线段BD上一点,分别以BC和CD为一边,在BD的同一侧作等边三角形ABC和等边三角形ECD,AD交CE于F,BE交A

证明:因为等边三角形ABC和等边三角形ECD,所以AB=AC,CE=CD,∠ACB=60,∠ECD=60,所以∠ACE=60°,∠ACB+∠ACE=∠ECD+∠ACE=120°,即∠BCE=∠ACD,

如图,三角形ABC中是等边三角形,D,E分别在边AB,AC上且BD=CE,AD、BE相交于点P,则角APE=?

D在BC上吧?∵△ABC是等边三角形∴AB=BC,∠C=∠ABC=60°∵BD=CE∴△ABD≌△BCE(SAS)∴∠CBE=∠BAD∴∠APE=∠ABP+∠BAP=∠CBE+∠ABP=∠ABD=60

两道八上数学题.1.如图,在给出的四个论断①BD=DE②CE=DC③BD是△ABC的中线,④△ABC是等边三角形,以其中

(1)已知④③②,求证①证明:因为是等边三角形且BD是中线,所以∠BDC=90°,∵DC=CE,∠DCB=60°,∴∠CDE=∠CED=30°又∵∠DBC=30度所以∠E=∠DBC=30°,∴D(2)

在等边三角形ABC中 点D在BC的延长线上 CE平分 角ACD 且CE=BD 求证 三角形ADE是等边三角形

证明:CE平分∠ACD,∴∠1=∠2=60°,在△ABD和△ACE中,AB=AC,∠B=∠1,BD=CE,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,又∠BAC=60°,∴∠DA

在等边三角形ABC中,D,E分别是BC,CA上的点,且BD=CE,AD,BE相交于点P,则角APE多少度、

因为:BD=CE又因为:AC=BC所以:AE=CD三角形ABE与三角形ACD中,AE=CDAB=AC角BAE=角ACD所以,三角形ABE与三角形ACD全等,所以有:角ABE=角CAD角APE=角ABE

如图,在四边形ABCD中,已知△ABC是等边三角形,∠ADC=120°,AD=3,BD=5,则边CD的长为

CD=2延长AD到点E,使DE=CD∵∠ADC=120°∴∠CDE=60°∴△CDE是等边三角形∴∠DCE=60°,CD=CE∵∠ACB=60°∴∠BCD=∠ACE∵BC=AC∴△BCD≌△ACE∴B

在三角形ABC中,角ABC=90,AD=BD,角A=30求证三角形BDC是等边三角形

因为AD=BD,所以∠A=∠ABD=30°,又因为∠ABC=90°,所以∠DBC=60°又因为∠ACB=60°,所以得出∠BDC=60°所以△BDC为等边三角形

如图,在四边形ABCD中,已知△ABC是等边三角形,∠ADC=30°,AD=3,BD=5,则边CD的长为

在AD外做等边三角形ADE,连接CE因为△ABC是等边三角形,△ADE是等边三角形所以AB=AC,AE=AD=DE=3,∠BAC=∠EAD=∠ADE=60°,所以∠BAD=∠EAC,所以△ABD≌△A

在等腰三角形ABC中,AB=AC=a,BD是AC上的高,且BD=1/2A,试求三角形ABC中角ABC

根据勾股定理可先求出AD=根号下(a方-四分之一a方)=二分之根号三a又因为AC等于a所以CD=AC-AD=(1-二分之根号三)a又因为三角形BCD也是直角三角形所以在根据勾股定理还可算出BC=(2-

关于等边三角形在三角形ABC中,BD平分∠ABC,延长BC到E,使CE=CD,连接D、E 若BD=DE,那么三角形ABC

∵CD=CE∴∠CDE=∠E∵DE=DB∴∠E=∠DBE,∠ACB=2∠E∵BD平分∠ABC∴∠ABC=2∠E∴∠ABC=∠ACB∴AB=AC∴△ABC是等腰三角形(请看原题.若∠A=∠ABC,则△A

在等边三角形ABC中,D,E分别为AC,BC的中点,联结BD,以BD为边做等边三角形BDF

证明:因为等边三角形ABC中,D,E分别为AC,BC的中点,所以AE⊥BC,BD⊥AC,∠CBD=30°,BD=AE又因为等边三角形BDF所以BF=BD,∠FBD=60°,∠BDF=60,所以BF=A

如图,在等边三角形abc 中,d是ac 边上的一点,连接bd ,将三角形bcd 绕点b逆时针旋转6

28再问:我要过程再答:错了错了啊,应该是19再问:哦再问:谢了!再答:bae由bcd得到,ae等于cd,ac=ad+cd就是ac=ad+ae然后bd=be角ebd为60度ebd为等边三角形,ed=b

如图,在等边三角形ABC中,BD是AC的中线,延长BC至点E,使CE=CD,试说明BD=DE 急

证明:∵⊿ABC是等边三角形∴∠ABC=∠ACB=60º∵BD是AC的中线∴BD平分∠ABC【等腰三角形三线合一】∴∠DBC=30º∵CE=CD∴∠E=∠CDE∵∠ACB=∠E+∠