在等腰rt三角形abc中,acb=90度
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 12:09:22
证明:连接AD∵AB=AC,∠BAC=90∴∠B=∠C=45∵D为BC的中点∴AD=BD=CD(直角三角形中线特性),AD⊥CD,∠BAD=∠CAD=∠BAC/2=45(三线合一)∴∠ADF+∠BDF
证明:如图:连接AD则AD是等腰直角△BAC的斜边BC的中线,∴AD=BD【直角三角形斜边中线=斜边一半】由等腰三角形的三线合一性质可得AD⊥BC、AD平分∠BAC∴∠B=∠DAF=45°在△ADF和
135度角一个边是2一个边是根号2余弦定理再问:不需要过程了
因为等腰RT三角形ABC中,AB=1,∠A=90°,∠C=45度故:AC=AB=1,∠ABE+∠AEB=90度因为点E为腰AC的中点,故:AE=EC=1/2AC=1/2因为EF⊥BE故:∠CEF+∠A
证明:连接AD.三角形ABC为等腰直角三角形,则AD=BC/2=CD;AD⊥BC;∠DAE=∠C=45°.又AE=CF.故⊿DAE≌⊿DCF(SAS),得:DE=DF;∠ADE=∠CDF.则∠EDF=
过F点做AC垂线,交AC于G点.设FG=x,根据三角形CFG相似三角形CBA可知CG=x根据三角形EFG相似三角形BEA可知EG=2xx+2x+1/2=1x=1/6CE=3x=1/2所以:三角形CEF
以上的两位仁兄写的都不完整和严谨答案是:4或者根号10或者2倍的根号51)以AC为斜边时(ABCD是个梯形),连接BD,DC=根号2,BC=2倍的根号2,在直角三角形BCD中求解,BD=根号102)以
∵(AB+BC)²=AB²+BC²+2AB·BC,(平方和公式,勾股定理)17²=12²+4(½AB·BC),∴rt△ABC面积=½
在EP上取点G,使EG=DF,连接BG,EB=ED.∠BEG=∠BDF=90°,EG=DF,——》△BEG≌△BDF,——》BG=BF,∠EBG=∠DBF,——》∠GBF=∠EBD=90°,∠PBF=
证明:△ABC为等腰直角三角形,所以∠A=∠B=45∠DME=45,所以∠AMD+∠BME=135∠AMD+∠ADM=180-∠A=135所以∠BME=∠ADM又有∠A=∠B所以△AMD∽△BEM,A
1、如以AC为直角边,D在BA的延长线上,且AD=AC=2所以:BD=2+2=42、如以AC为直角边,D不在BA的延长线上过D作DE垂直BA的延长线于E则BE=4,DE=4在直角三角形BDE中,斜边B
已知,CM是Rt△ABC斜边上的中线,(题中应该是∠A小于∠B)可得:CM=AM,所以,∠ACM=∠BAC.∠BCD=90°-∠B=∠BAC=∠ACM=∠DCM.因为,∠BCD+∠ACM+∠DCM=9
a+b=4ab=2a^2+b^2=(a+b)^2-2ab=12=斜边的平方RT三角形ABC的外接圆的半径就是斜边的一半所以为根号3
做CE⊥AP于E,CF⊥PB于F∵CP平分∠APB∴CE=CF∵AC=BC∴RT△ACE≌RT△BCF(HL)∴∠BCF=∠ACE∵∠ACF+∠BCF=90°∴∠ACE+∠ACF=∠ECF=90°∴∠
解题思路:由于∠C=90°,BC=4,AC=4,易知△ABC是等腰直角三角形,于是∠ABC=45°,又△A′B′C′是△ABC平移得到的,那么∠C=∠A′C′B′=90°,进而可求∠BOC′=45°,
1、当AD=AC,则B、A、D在一条直线上,BD=AB+AD=AB+AC=4,2、当AD=CD时,则因为AC=2,AD=CD=根号2,角BAD=135度,用余弦定理有,BD^2=AD^2+AB^2-2
你学过相似三角形没?学过我在给你发上来,没学过我就换个方法做.再问:学过全等三角形。。。再答:再答:因为初二知识有限,所以做法只能这样了,其中要作一些辅助线,全等三角形我基本没证明,应该不太难证的,有