在正方型ABCD中,E为BC上的一点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:16:54
比较基本,理解了空间直线间的距离的定义就容易了再问:算起来很麻烦啊再答:计算量还是有的。
(1)E是BC的中点∴2向量AE=向量AB+向量AC∴2向量AE.向量CD=(向量AB+向量AC).(向量AD-向量AC)=向量AB.向量AD-向量AB.向量AC+向量AC.向量AD-AC²
证明(1):∵E为BC边上的一点,且AB=AE∴AE=CD∠AEB=∠B∵∠B=∠D(平行四边形)∠AEB=∠EAD(平行)∴∠D=∠EAD(等量代换)在△ABC与△EAD中∵AE=CD,∠D=∠EA
连接AE因为ABCD为正方形,设AB=BC=CD=DA=a,又EC=1/4BC,F为DC中点,所以有BE=3/4a,CE=1/4a,CF=DF=1/2a由勾股定理,知AF平方=DF平方+AD平方=5/
因为在正方形ABCD中,E为CD中点,所以DE=EC=1/2AD因为CF=1/4BC,且BC=AD,所以CF=1/2CE因为角D=角C=90度所以直角三角形ADE相似于直角三角形ECF所以角DAE=角
第一题,角BDE等于30度,可知当BE为1时,DE等于“根号3”..BE=FC=1,EF=DE=“根号3”第二题,相似三角形“角角角原理”,可推知DK垂直于CK再问:第一题为什么BE为1再答:假设法
S(BEF):S(ABF)=EF:AF=BE:AD=BE:(BE+CE)=1:3,即S(ABF)=3*S(BEF)=6同理可得S(ADF)=3*S(ABF)=18,四边形面积=(6+18)*2=48
证明:∵ABCD是正方形∴AD=AB=BC,∠A=∠B=90º∵AE=BE=½ABBF=¼BC∴AE/AD=BF/BE=½又∵∠EBF=∠DAE=90º
连接AE设EC=1则BC=AD=AB=4,BE=3F为中点,则DF=CF=2EF²=CE²+CF²=5(BC⊥CD)AF²=AD²+DF²=
连接AE设正方形的边长为4∵EC=4分之1BC∴EC=1BE=3∵F为DC中点∴DF=FC=2利用勾股定理EF=更号5∵AB=4BE=3利用勾股定理∴AE=5同理:∵AB=2DF=2∴AF=2更号5通
【题目】正方形ABCD中,点E,F分别在BC,CD上,且△AEF是正△.(1)求证:CE=CF;(2)若等边三角形AEF的边长为2,求正方形ABCD的周长.【分析】①本题考查了正方形的性质,全等三角形
此题目的考点是:菱形的性质;等腰三角形的性质;等边三角形的性质.分析:正△AEF的边长与菱形ABCD的边长相等,所以AB=AE,AF=AD,根据邻角之和为180°即可求得∠ADF的度数.正△AEF的边
连FE交AB的延长线与G,因为BE=EC,角EBG和角ECF都是直角,易证三角形EBG全等于三角形ECF,即GE=EF,BG=CF,则AF=CF+BC=AB+BG=AG,三角形AFG是等腰三角形,又G
只要证明三角形ECF相似于三角形FDA就行了我记得是不是有个定理,对应边成比例,对应角相等的三角形就是相似三角形啊!因为EC=1/4BC,BC=CD=AD,DF=1/2CD所以,EC/FD=CF/AD
CE=1/4*BCBE=3/4*BCAF^2=AD^2+DF^2=AD^2+1/4*CD^2=5/4*AD^2EF^2=EC^2+FC^2=1/16*BC^2+1/4*DC^2=5/16*AD^2AC
连接AF设AB=AD=BC=CD=4∴E为CD的中点DE=CE=1/2CD=2∵CF=1/4BC=1∴BF=3∴勾股定理:AE²=AD²+DE²=4²+2
在正方形ABCD中,E为CD的中点,F为BC上一点,且CF=(1/4)BC,试说明AE⊥EF.因为,在△ADE和△ECF中,∠ADE=90°=∠ECF,AD/DE=2=EC/CF,所以,△ADE∽△E
已知③求证①②.即已知O为BD中点,连接AC,四边形ABCD为平行四边形,则O也为AC中点则AO=CO,∠AOE=∠COF,AD//BC,则∠EAO=∠FCO,所以三角形AOE和COF全等,得证AE=
为了计算简单,设正方形边长为4a,则CF=DF=2a,CE=a,BE=3a∴AF^2=AD^2+DF^2=(4a)^2+(2a)^2=20a^2EF^2=CE^2+CF^2=a^2+(2a)^2=5a
角BAE=30AB=4*sin30=2AD//BC所以角DAE=角ABE=30AD=4/cos30=8倍根号3/3周长=2(2+8倍根号3/3)=4+16倍根号3/3