在正方型ABCD中,E为BC上的一点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:16:54
在正方型ABCD中,E为BC上的一点
在棱长为1的正四面体ABCD中,E和F分别是AD和BC的中点,求AF和CE距离

比较基本,理解了空间直线间的距离的定义就容易了再问:算起来很麻烦啊再答:计算量还是有的。

在棱长为1的正四面体ABCD中,E是BC的中点,则向量AE*向量CD=

(1)E是BC的中点∴2向量AE=向量AB+向量AC∴2向量AE.向量CD=(向量AB+向量AC).(向量AD-向量AC)=向量AB.向量AD-向量AB.向量AC+向量AC.向量AD-AC²

如图,在平行四边形ABCD中,E为BC上一点,且AB=AE

证明(1):∵E为BC边上的一点,且AB=AE∴AE=CD∠AEB=∠B∵∠B=∠D(平行四边形)∠AEB=∠EAD(平行)∴∠D=∠EAD(等量代换)在△ABC与△EAD中∵AE=CD,∠D=∠EA

如图,在正方形ABCD中,F为DC中点,E为BC上一点,且EC=1/4BC,证明∠AFE=90°

连接AE因为ABCD为正方形,设AB=BC=CD=DA=a,又EC=1/4BC,F为DC中点,所以有BE=3/4a,CE=1/4a,CF=DF=1/2a由勾股定理,知AF平方=DF平方+AD平方=5/

如图,在正方形ABCD中,E为CD的中点,F为BC上的一点,且CF=1/4BC,试说明:AE垂直EF

因为在正方形ABCD中,E为CD中点,所以DE=EC=1/2AD因为CF=1/4BC,且BC=AD,所以CF=1/2CE因为角D=角C=90度所以直角三角形ADE相似于直角三角形ECF所以角DAE=角

图在下面1正△ABC和正方形DEFG如图放置点E,F在BC上点D,D分别在边AB,AC上求BC比EF2在提醒ABCD中A

第一题,角BDE等于30度,可知当BE为1时,DE等于“根号3”..BE=FC=1,EF=DE=“根号3”第二题,相似三角形“角角角原理”,可推知DK垂直于CK再问:第一题为什么BE为1再答:假设法

在平行四边形ABCD中,E在BC上,BE:EC=1:2,连接BD交AE与F,三角形BEF面积为2,求平行四边形ABCD的

S(BEF):S(ABF)=EF:AF=BE:AD=BE:(BE+CE)=1:3,即S(ABF)=3*S(BEF)=6同理可得S(ADF)=3*S(ABF)=18,四边形面积=(6+18)*2=48

如图,在正方形ABCD中,E为ab的中点,f为bc上的一点,且bf=4分之一bc,求证:de垂直ef

证明:∵ABCD是正方形∴AD=AB=BC,∠A=∠B=90º∵AE=BE=½ABBF=¼BC∴AE/AD=BF/BE=½又∵∠EBF=∠DAE=90º

在正方形ABCD中,F为DC的中点,E为BC上的一点,且EC=1/4BC,求证AF⊥EF

连接AE设EC=1则BC=AD=AB=4,BE=3F为中点,则DF=CF=2EF²=CE²+CF²=5(BC⊥CD)AF²=AD²+DF²=

在正方形ABCD中,F为DC中点,E为BC上1点,且EC=4分之1BC,证AF垂直EF

连接AE设正方形的边长为4∵EC=4分之1BC∴EC=1BE=3∵F为DC中点∴DF=FC=2利用勾股定理EF=更号5∵AB=4BE=3利用勾股定理∴AE=5同理:∵AB=2DF=2∴AF=2更号5通

正方形ABCD中,点E,F分别在BC,CD上,且△AEF是正△,求证:CE=CF

【题目】正方形ABCD中,点E,F分别在BC,CD上,且△AEF是正△.(1)求证:CE=CF;(2)若等边三角形AEF的边长为2,求正方形ABCD的周长.【分析】①本题考查了正方形的性质,全等三角形

如图,正△AEF的边长与菱形ABCD的边长相等,点E,F分别在BC,CD上,则∠AFD为?

此题目的考点是:菱形的性质;等腰三角形的性质;等边三角形的性质.分析:正△AEF的边长与菱形ABCD的边长相等,所以AB=AE,AF=AD,根据邻角之和为180°即可求得∠ADF的度数.正△AEF的边

在正方形ABCD中,E为BC的中点,F在CD上,且AF=BC+CF

连FE交AB的延长线与G,因为BE=EC,角EBG和角ECF都是直角,易证三角形EBG全等于三角形ECF,即GE=EF,BG=CF,则AF=CF+BC=AB+BG=AG,三角形AFG是等腰三角形,又G

如图在正方形ABCD中,F为CD的中点,E为BC上的一点,且EC=四分之一BC 求证∠AFE=90°

只要证明三角形ECF相似于三角形FDA就行了我记得是不是有个定理,对应边成比例,对应角相等的三角形就是相似三角形啊!因为EC=1/4BC,BC=CD=AD,DF=1/2CD所以,EC/FD=CF/AD

如图,在正方形ABCD中,F为DC的中点,E为BC上的一点,且EC=1/4BC,那么AF垂直EF.

CE=1/4*BCBE=3/4*BCAF^2=AD^2+DF^2=AD^2+1/4*CD^2=5/4*AD^2EF^2=EC^2+FC^2=1/16*BC^2+1/4*DC^2=5/16*AD^2AC

如图,在正方形ABCD中,E为CD的中点,F为BC上一点,且CF=1/4BC.求证:AE⊥EF.

连接AF设AB=AD=BC=CD=4∴E为CD的中点DE=CE=1/2CD=2∵CF=1/4BC=1∴BF=3∴勾股定理:AE²=AD²+DE²=4²+2

如图,在正方形ABCD中,E为CD的中点,F为BC上一点,且CF=?BC,试说明AE⊥EF.

在正方形ABCD中,E为CD的中点,F为BC上一点,且CF=(1/4)BC,试说明AE⊥EF.因为,在△ADE和△ECF中,∠ADE=90°=∠ECF,AD/DE=2=EC/CF,所以,△ADE∽△E

如图,在平行四边形ABCD中,E为AD上一点,F为BC上一点,EF与对角线BC交于点

已知③求证①②.即已知O为BD中点,连接AC,四边形ABCD为平行四边形,则O也为AC中点则AO=CO,∠AOE=∠COF,AD//BC,则∠EAO=∠FCO,所以三角形AOE和COF全等,得证AE=

如图,在正方形ABCD中,F为DC的中点,E为BC上一点,且EC=1/4BC.求AF垂直EF.

为了计算简单,设正方形边长为4a,则CF=DF=2a,CE=a,BE=3a∴AF^2=AD^2+DF^2=(4a)^2+(2a)^2=20a^2EF^2=CE^2+CF^2=a^2+(2a)^2=5a

初二勾股定理几何在矩形abcd中e在bc上角bae=30度,角aed=90°,ae=4则abcd周长为

角BAE=30AB=4*sin30=2AD//BC所以角DAE=角ABE=30AD=4/cos30=8倍根号3/3周长=2(2+8倍根号3/3)=4+16倍根号3/3