在欧式空间Rn中,若 与a1,a2,....,am均正交

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 20:57:00
在欧式空间Rn中,若 与a1,a2,....,am均正交
设A,B为两个n阶正交矩阵,证明:AB-1的行向量构成n维欧式空间Rn的标准正交基

两个正交矩阵的乘积仍是正交矩阵,正交矩阵的逆仍是正交矩阵.一个n阶矩阵的A行(列)向量可以构成Rn的标准正交基的充要条件是A是正交矩阵.具体的说明,你自己补全下.

设a是n维欧式空间V的一个单位向量,在V上定义变换T为T(x)=x-2(x,a)a,在V中找出一组标准正交基,使T在这组

⑴T(x)=x-2(x,a)aT²﹙x﹚=T﹙T﹙x﹚﹚=x-2(x,a)a-2﹙[x-2(x,a)a],a﹚a=x-2(x,a)a-2﹛﹙x,a﹚a-2[(x,a)a,a﹚]a﹜=x-2(

在欧式空间R4中,求三个向量a1,a2,a3所生成的子空间的一个标准正交基

因为a1,a2,a3三个向量都有四个分量,所以每个向量都是4维的,这和我们常见的2维,3维向量是不同的,因为这个,可能你理解上去有点抽象.事实上,我们完全可以用三维欧式空间中的向量来类比.在三维欧式空

线性代数题欧式空间设a1,a2…am是n维欧式空间V的一个标准正交向量组.证明对V中任意向量a有【求和(i从1开始到m)

记Q=【a1,a2,...,an】是正交阵,其中am+1,am+2,...,an和a1,...,am组成V的正交基,因此有Q^Ta模长的平方=a^TQQ^Ta=a^Ta=a的模长的平方.注意到要证不等

高等代数考研题设V是4维欧式空间,A是V的一个正交变换.若A没有实特征值,求证:A可分解为两个正交的二维A不变子空间的直

感觉题目有点问题,最后应该是证明:V可分解为两个正交的二维A不变子空间的直和,否则A作为一个变换怎么分解为直和?我得想法:V是4维空间,则A的特征多项式为4次,又没有实特征值,从而特征多项式一定是两个

设a1,a2...an是Rn的一个基,a∈Rn,证明:若(a,ai)=0,i=1,2...n,则a=0

(a,ai)=0故(a1T,a2T…anT)Ta=0a1,a2…an为Rn的基故a1T,a2T,…anT线性无关,a=0

设a1,a2,a3,...an是n维列向量空间Rn的一个基,A是任意一个n阶可逆矩阵,证明:n维列向量组

证:设k1Aa1+k2Aa2+...+knAan=0则A(k1a1+k2a2+...+knan)=0因为A可逆,等式两边左乘A^-1得--这一步是关键k1a1+k2a2+...+knan=0又由已知a

设a1,a2...am是n维欧式空间V的一个标准正交向量组,证明:对V中任意向量a有 ∑(a,ai)^2

将a1,a2...am扩充为V的标准正交基a1,a2...am,...,an任一向量a可表示为a=k1a1+k2a2+...+kmam+...+knan(a,ai)=ki||a||^2=(a,a)=(

证明:在n维欧式空间中,两两成钝角的非零向量不多于N+1个

用反证法吧.假设a1…an+2(下标,后同)两两互为钝角n维空间任意n+1个向量线性相关,即存在不全为0的数k1….kn+1使得k1a1+…+kn+1an+1=0两边跟an+2内积,k1<a1,an+

在n维欧式空间中,不存在n+1个两两正交的非零向量,为什么?

只要证明两两正交的非零向量线性无关即可,用线性无关的定义去证明.再问:我要解答过程再答:我只给提示

关于线性代数 线性空间 和 欧式空间

欧式空间V有有限的标准正交基,个数为dimV ,设dimV=n,任何n维欧氏空间都与R^n同构正交阵行向量或列向量是单位向量.即元素的平方和为1,n*(1/4)^2=1 所以n=1

在出口中 RN number 我们客户在洗标中都加上这个RN码,

RN=RegisteredidentificationNumber.由美国FederalTradeCommission(商务部?)颁发给在美国本土从事(纺织,羊毛和皮毛)制造,进口,批发和销售的公司.

数学上的欧式空间是什么意思?

设V是一个非空集合,P是一个数域,在集合V的元素之间定义一种代数运算,叫做加法;这就是说,给出了一个法则,对于V中任意两个元素@和#,在V中都有唯一的一个元素$与他们对应,称为@与#的和,记为$=@+

线性代数N位向量欧式空间问题

a2=(1,0,-1),a3=(-1,0,1)

设a1,a2,a3是三维欧式空间V的一组基,这组基的度量矩阵为.

解:(1)因为==+2+=1-2*1+2=1所以γ是一个单位向量.(2)因为β与γ正交,所以=0.而==+=1+k=1+k(+)=1+k(2-1)=1+k所以k=-1.

在拓扑学的度量空间里,ρ:Rn×Rn→R1是什么意思?

ρ是关于Rn内两点的函数.就是对Rn中每两点赋予一个实数值R1是实数R1代表实数集ρ:Rn×Rn→R1ρ是从Rn×Rn到实数集的一个映射.就是对Rn中任意两点赋予一个距离.要形成度量空间的话还有别的条

在普通欧式度量的定义下,Hilbert空间是不是完备的

这个不对吧,肯定是完备的啊数列{xn}是Hilbert空间里的数列,并且存在x,使得d(xn,y)=0当n趋于无穷,显然对于任意一个整数i,有|xni-yi|