在数列an中,a1=3,an=2的n次方p nq
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:53:25
利用叠加法a(n+1)=a(n)+1/[n(n+1)]∴a(n+1)-a(n)=1/[n(n+1)]=1/n-1/(n+1)∴a(2)-a(1)=1-1/2a(3)-a(2)=1/2-1/3a(4)-
a(n+1)=3an/(an+3)a2=(3*1/2)/(1/2+3)=(3/2)/(7/2)=3/7a3=(3*3/7)/(3/7+3)=(9/7)/(24/7)=9/24=3/8a4=(3*3/8
第1问:设数列{bn},令bn=an-n则an=bn+n代入a(n+1)=4an-3n+1得b(n+1)+n+1=4(bn+n)-3n+1化简得b(n+1)=4bn所以数列{bn}即数列{an-n}是
由条件得a1=2,a2=5.且有:a2-a1=3*1,a3-a2=3*2,a4-a3=3*3,...an-a(n-1)=3*(n-1),累加得,an-a1=3*(1+2+3+...+n-1)=3n(n
a1+a2+.+an=2^na1+a2+.+an+a(n+1)=2^(n+1)两式相减得a(n+1)=2^n所以an=2^(n-1)在已知式中令n=1得a1=2令n=2得a2=2所以数列的通项公式为a
a(n+1)=2an+2^n,bn=an/2^(n-1),b(n+1)=a(n+1)/2^n,b1=a1/2^0=1a(n+1)/2^n=an/2^(n-1)+1,b(n+1)=bn+1,bn为首项为
等式两边倒数,得到1/an+1=1+3/an,再变形,得到:(1/an+1)+1/2=3(1/an+1/2)所以{bn}={1/an+1/2}是一个等比数列,第一项b1=1/a1+1/2=1所以bn=
3^n+2是什么意思,是2+3^n还是3^(n+2)如果是3^n+2那么题目有问题,请把题目说清楚,不然没办法做题的,根据题目后面的问题我按照3^(n+2)解答.an+1=3an+3^(n+2),等式
(1)a1=32a(n+1)=(1+1/n)^2.an+2(n-1/n)2a(n+1)=[(n+1)^2/n^2]an+2(n^2-1)/n2a(n+1)/(n+1)^2=an/n^2+2(n-1)/
(1)∵an+1=2an+2n,∴an+12n=an2n−1+1.∵bn=an2n−1,∴bn+1=bn+1,∴数列{bn}是以b1=a120=1为首项,1为公差的等差数列.(2)由(1)可知:bn=
n这是3^n吧.两边同时除以2的n+1次方,则a(n+1)/2^(n+1)=a(n)/2^n+(3/2)^n再用累加法:a2/2^2-a1/2=3/2a3/2^3-a2/2^2=(3/2)^2…………
a(n+1)=an/(2an+1)1/a(n+1)=(2an+1)/an=1/an+21/a(n+1)-1/an=2,为定值.1/a1=1/3,数列{1/an}是以1/3为首项,2为公差的等差数列.1
提取公因式2的an次方.下面不用多说了吧?再问:继续说撒再答:不是吧。。2的an+1次方等于2的an次方*2,因此提出2的an次方后,变为(2-1)2^an=3,变成2的an次方等于3,an等于log
n≥2时an=Sn-S(n-1)=n²an-(n-1)²a(n-1)∴an/a(n-1)=(n-1)/(n+1)∴a2/a1=1/3a3/a2=2/4a4/a3=3/5……a(n-
(1)、a2=2a1/(2a1+1)=(4/3)/(4/3+1)=4/73a=2a2/(2a2+1)=8/15因为a2-a1不等于a3-a2,所以an不是等差数列又因为a2/a1不等于a3/a2,所以
令bn=an²则b(n+1)=bn+4所以bn是等差数列,d=4b1=a1²=1所以bn=4n-3an>0所以an=√(4n-3)
(1)an+1=3an+3n+1,∴an+13n+1=an3n+1,于是bn+1=bn+1,∴{bn}为首项与公差均为1的等差数列.又由题设条件求得b1=1,故bn=n,由此得an3n=n∴an=n×
sn/n=(2n-1)an(n>=1),sn=(2n^2-n)an,s(n+1)=(2n^2+3n+1)a(n+1),两者相减可得(2n+3)an+1=(2n-1)an,an=(2n-3)*a(n-1
an-a(n-1)=n则a(n-1)-a(n-2)=n-1a(n-2)-a(n-3)=n-2.a2-a1=2上述各式相加an-a1=2+3+4+.+nan=1+2+3+4+.+n化简得an=n(1+n
a(n+2)-an=2(an-a(n-1))a2-a1=3-1=2数列{an+1-an}是首项为2公比为2等比数列