在总体为N(52,6.3^2)中随机抽取一容量为36的样本
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:36:32
对于θ,如果E(θ^)=θ,则θ^为θ的无偏估计.而样本均值可以认为是总体均值的无偏估计,即E(Xˉ)=E(X)=μ而样本方差可以认为是总体方差的无偏估计,即E(S^2)=D(X)=σ^2所以这个题就
Yn的极限应该是6吧.这里的Yn其实就是样本的二阶原点矩,记为A2.其一阶原点矩为1/n(X1+X2+……+Xn),记为A1.其二阶中心矩记为S^2.它们之间的关系为A2-A1^2=S^2.又因为X服
石块对水的压力不是3N,根据牛顿第三定律,作用力与反作用力大小相等方向相反,所以压力与浮力相等,也是2N.总体对桌面的压力是水的重力加上石头以及水杯的重力
U=n^(1/2)*(xˉ-μ)/σ~N(0,1),D(U)=1.
1、样本均值服从N(12,0.8)P(|样本均值-12|>1)=P(|样本均值-12|/根号0.8>根号5/2)=2F(1.118)-1=0.76982、P{max{X1,X2,X3,X4,X5}>1
大数定律:一组相互独立且具有有限期望与方差的随机变量X1,X2,…,Xn,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值.这里X21,X22,…,X2n满足大数定律的条件,且EX2i
样本均值X0~N(4,25/n)那么√n(X0-4)/5~N(0,1)P(2=24.01所以n至少为25再问:帮我再看看这个随机变量X服从均值为3,方差为σ^2的正态分布,且P{3
U=n^(1/2)*(xˉ-μ)/σ服从标准正态分布,即UN(0,1),因此,D(U)=1.
样本均值?那不直接是(X1+.+Xn)/n不过应该不是问这个吧可以说详细点?再问:是等于N(μ,σ^2)吗再答:有完整的题目么?这个X~N(μ,σ^2)意思是总体X服从总体均值为μ,总体标准差为σ的正
这简单,我要有时间,给你做出来再问:给你时间,截至之前做出来都行。我要详细解答再答:请看答案,不知道怎么答案改不过来了,应该是=2X(1-∮(1.44)=2X(1-0.9521)=0.1498
把10和15分别代入Φ[(x-12)/2],查正态分布表Φ(-1)和Φ(1.5),假设分别为P1和P2(我这里没表).则一个数小于10的概率是P1;一个数大于15的概率是1-P2(1)假设5个数都大于
是习题的答案正确的,请在确认一下书本.
第一个标准正太第二个t(n-1)
再问:啊在书上看到了概念不好意思==三克油么么哒ww
S12=σ2的平方S22=σ2的平方所以Z=(a+b)σ2的平方=σ2的平方=S12=S22所以命题成立不知道D(Z)的意思
x~(3.4,(6/√n)^2),Φ((5.4-3.4)/(6/√n))-Φ((1.4-3.4)/(6/√n))>=0.95,2Φ(√n/3)-1>=0.95,Φ(√n/3)>=0.975,√n/3>
因为正态分布具有再生性,就是由这些样本经过变形组成的样本空间,仍然服从正态分布N(2,4),则E(X)=2,D(X)=4则E[(X1+X2+X3+X4)/4]=1/4[E(X1)+E(X2)+E(X3