在平行四边形abcd中 e为bc边上的中点,f为ae上一点,连接bf交ad于点g
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:18:41
(1)①存在k=3,使得∠EFD=k∠AEF.理由如下:连接CF并延长交BA的延长线于点G,∵F为AD的中点,∴AF=FD.在平行四边形ABCD中,AB∥CD,∴∠G=∠DCF.在△AFG和△CFD中
延长BE交AD于F,则△BCE≌△GDE,所以AD=GD,又AP⊥BE所以PD是直角三角形APG斜边上的中线,所以PD=AD
应该四边形AECF为菱形.证明:平行四边形ABCD两对角线交于O,∵EF⊥AC分别交AD,BC于E,F,连AF,CE,由F在AC的垂直平分线上,∴AF=CF,同理:AE=CE.又∠FAO=∠FCO=∠
证明(1):∵E为BC边上的一点,且AB=AE∴AE=CD∠AEB=∠B∵∠B=∠D(平行四边形)∠AEB=∠EAD(平行)∴∠D=∠EAD(等量代换)在△ABC与△EAD中∵AE=CD,∠D=∠EA
作AD的中线F,连接EF.∵四边形ABCD是平行四边形∴AD=BCAF=FBBE=EC∴AF=BE=EC=FD又∵AD//BC∴∠FAE=∠AEB∠BAE=∠AEFAE是公共边∴△ABE≌△AFE(A
证法一.延长DE交AB延长线于点F.因为ABCD是平行四边形所以AD=BC,AB=CD,且AB//DC所以角EBF=角C,角F=角EDC又因为E是BC的中点,BE=EC所以三角形BEF全等于三角形CE
面积全等.证明(我想图的话楼主应该有了吧):∵AE平行且等于DM∴AD平行且等于EM又∵平行四边形ABCD与平行四边形ADME高相等∴S(平行四边形ABCD)=S(平行四边形ADME).同理:S(平行
取AD的中点F,连接EF,∵平行四边形ABCD,BC=2AB,E为BC的中点,∴AD∥BC,AD=BC=2AB=2BE=2AF=2DF,∴AB=BE=AF=DF,∴AF=BE,AF∥BE,∴四边形AF
设AD=BC=Y.AB=CD=X有x+y=40/2AE*Y=AF*X解得x=12y=8面积=AE*BC=48
解题思路:本题主要考查对直角三角形斜边上的中线,平行四边形的性质和判定等知识点的理解和掌握,能求出AF=DF=EF是解此题的关键解题过程:最终答案:90度
S(BEF):S(ABF)=EF:AF=BE:AD=BE:(BE+CE)=1:3,即S(ABF)=3*S(BEF)=6同理可得S(ADF)=3*S(ABF)=18,四边形面积=(6+18)*2=48
(1)因为E,F分别是BC,AD的中点所以2EC=BC,2AF=AD又因为AD,BC平行且相等所以EC,AF平行且相等所以四边形AECF是平行四边形(2)(题目出错了吧,应该是是说明四边形ABEF是菱
选B证明:∵平行四边形ABCD∴AB=CD,AD=BC∴平行四边形ABCD的周长=AB+BC+CD+AD=2(AD+CD)∴2(AD+CD)=16∴AD+CD=8∵EF垂直平分AC∴AE=CE∴△CD
如图:AE垂直BC于E,且EB=EC,所以,AB=AC=CD因为AB+BC+CD+AD=7.6, 即 2AB+2BC=7.6又因AB+AC+BC=5.8, 即
在四边形ABCD中,AD=BCDE垂直AC于EBF垂直AC于F且AF=CE求证四边形ABCD为平行四边形连接BE、DF∵AF=CE∴AF+EF=CE+EF即AE=CF又∴AD=BC∴RtΔADE≌Rt
(1)证明:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC.∴∠DAE=∠AEB.∵AB=AE,∴∠AEB=∠B.∴∠B=∠DAE.∵在△ABC和△AED中,AB=AE∠B=∠DAEAD=BC
具体见图:希望帮得到你\(^o^)/~
Sabc=1/2Sabcd=9,Sbef=1/3Sabc=3再问:怎么求到Sbef=1/3Sabc再问:懂了懂了
如图可知,角AED和角AFB为直角即90度,又因为四边形ABCD为平行四边形,所以角B等于角D,即可证△AED相似于△AFB.又因为AE,:AF比为3:4,所以AD:AB为3:4.又因为四边形ABCD