在如图所示的平面直角坐标系中描出A(2 3),B(-3,-2),C(4,1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:03:01
解题思路:MN的中垂线就是AB,求出AB的直线方程即可解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.co
解题思路:本题考查了圆周角与圆心角,圆周角与圆外角,圆内角之间的关系;勾股定理,三角函数值等知识,难度较大,特别是第3小题,要利用圆周角与圆外角及圆内角之间的关系,才能得出结论。解题过程:第(2)题的
从D作AB的垂线,交AB于M,∴DM=y-1,BC=4,MB=1-x,AM=-7-x∴37=(4+y-1)×(1-x)÷2-(-7-x)×(y-1)÷2化简得到:2x-4y+39=0又2x+5y=22
如果每一格各边都是以1为单位,那么:4*8-3-2-3/2-3-8=16-1.5=14.5是四边形的面积(就是用四边形所在的矩形的面积减去四边形oabc周围的四个三角形的面积和一个小的长方形的面积)若
如图,C点坐标为(-3,3),S△ABO=S正方形OECD-S△OAD-S△OBE-S△ABC=3×3-12×3×2-12×3×1-12×2×1=9-3-32-1=72.
在平面直角坐标系中,求一个三角形的面积,则需要根据三角形的各顶点的坐标,确定边长或高,进而求出三角形的面积.而对于四边形,五边形等图形面积的计算,则往往需要转化为三角形解决
没时间详细解答,给你个思路:1、除开无用条件,原题即是求一点P,P在Y=1/4*X^2上,且P到M(-3,3)的距离加上P到B(0,1)的距离最小2、假设P(x,y),PM=根号[(y-3)^2+(x
将4个点连起来就行了,每个点到顶点的距离为根号2.
过A作AE⊥BC于E,地这D作DF⊥BC于F,AE=5,BE=2,CE=4,DF=4,CF=1,S四边形ABCD=SΔABE+S梯形AEFD+SΔCDF=1/2×BE×AE+1/2(AE+DF)×EF
小题1:A(-2,3)B(-6,2) C(-9,7)小题2:S△ABC=11.5小题3:A1(2,0)、B1(-2,-1)、C1(-9,7)(1)根据各点所在象限的符号和距坐标轴的距离可得各
(2).a你做错了当0≤x≤5时P(5-x,0)Q不变(0,10+x)5≤x≤10时P(x-5,0)Q(0,10+x)b.△APQ在运动过程中,其面积始终是AP×OQ/2∵△APQ的面积为32平方单位
解题思路:先根据题意确定C点坐标,再利用数量积的计算公式求解即可解题过程:
/>△ABO被3×3的正方形正覆盖∴△ABO面积=3²-﹙½×1×2+½×1×3+½×2×3﹚=9-11/2=7/2
(1)依条件有D(0,-4),E(0,.1)由△OEA∽△ADO知OA=OE*OD=4.∴A(2,0)由Rt△ADE≌Rt△ABF得DE=AF∴F(3,0).将A,F的坐标代入抛物线方程,得4a+2b
考点:相似三角形的判定与性质;坐标与图形性质;勾股定理;正方形的性质.专题:规律型.分析:先根据两对对应角相等的三角形相似,证明△AOD和△A1BA相似,根据相似三角形对应边成比例可以得到AB=2A1
1、向量a的模可看作点Q到点(0,√3)的距离,向量b的模可以看作点Q到点(0,-√3)的距离;所以IaI+IbI=4可看作点Q到点(0,√3)和点(0,-√3)的距离之和为4,所以点Q的轨迹为以点点
解题思路:利用二次函数计算解题过程:请看附件最终答案:略
(1)C点(√3,-1);D点(√3/2,-3/2)(2)第二个问题估计你说的有点问题,我想你应该是经过O、C、D三点抛物线的解析式吧如果是O、C、D:y=-4/3x²-5√3/3x
解题思路:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PO,PA.分别求出PD、DC,相加即可.解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.