在圆o中直径ab⊥cd于点e,点p在ba的延长线上

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 02:03:24
在圆o中直径ab⊥cd于点e,点p在ba的延长线上
如图,AB为圆O的直径,CD⊥AB于点E,交圆O于C、D两点,OF⊥AC于点F

(1)答案不唯一,只要合理均可.例如:①BC=BD;②OF‖BC;③∠BCD=∠A;④△BCE∽△OAF;⑤BC^2=BE·AB;⑥BC^2=CE^2+BE^2;⑦△ABC是直角三角形;⑧△BCD是等

如图,AB为圆O的直径,CD⊥AB于点E,叫圆O与点D,OF⊥AC于点F.

1.连接OCCD⊥AB于点E,∴BC=BD(垂径定理)∴∠BCD=∠D=30°(等弦所对的圆周角相等)又因∠BEC=90°,BC=1∴BE=BC/2=1/2CE=√(BC²-BE²

2010福州数学中考题 如图 AB是圆O的直径,弦CD⊥AB于E,点P在圆O上,∠1=∠C,CB‖PD

连AC,∵AB为圆O的直径,所以∠ACB=90°又∵CD⊥AB,∴BC弧=BD弧,∴∠A=∠P,∴sinA=sinP在Rt△ABC中,sinA=BC/AB又∵sinP=3/5,∴BC/AB=3/5又∵

如图,AB是圆O的直径,CD为弦,CD⊥AB于点E

∵CD⊥AB于点E∴根据勾股定理得(16÷2)²+(AO-4)²=(AO)²∴AO=10

如图,AB为⊙O的直径,弦CD⊥AB于点E.

(1)∵直径AB⊥弦CD,∴AB平分弦CD,即CE=12CD=3.在Rt△OCE中,由勾股定理,得OE=OC2−CE2=52−32=4;(2)②,证明:连接OP(如图1),∵OC=OP,∴∠2=∠3,

6.如图,在圆o中,AB为直径,弦CD交AB于点E,且OE=CE,求证:弧BD=3弧AC.

连接OC,OD∵CE=OE∴△CEO为等腰三角形,∴∠COE=∠OCE∠CEO=180°-2∠COE∵∠CEO+∠OED=180°∴∠OED=2∠COE又∵OC,OD半径∴∠OCE=∠ODE∴∠ODE

△ABC内接于圆O,AB是圆O的直径,点D在圆O上,过点C的切线交AD延长线于于E且AB⊥CE,连接CD,

且AE⊥CE(疑似),按这个来做证明:1)因为AB是直径,所以∠BAC+∠B=90,因为AE⊥CE所以∠CAE+∠ECA=90,因为EC与圆相切所以∠ECA=∠B(弦切角定理)所以∠CAE=∠BAC所

如图,在圆O中,弦CD与直径AB垂直于H点,E是AB延长线上一点,CE交圆O于F点

(1)证明:连接FA.∵AB为圆O直径,所以∠AFB=90°,∴∠AFD+∠DFB=90°,∠CFA+∠BFE=90°.∵弦CD与直径AB垂直于H,∴由垂径定理,得弧CA=弧DA,∴∠CFA=DFA.

在圆O中,AB、CD是两条弦,且AB⊥CD于点G,OE⊥BC于点E.求证:OE=1/2AD

过O作OF⊥AD交AD于F,连BO并延长交⊙O于H.∵BH是直径,∴∠BCH=90°,又∠BGD=90°,而B、D、H、C共圆,∴∠CHB=∠CDH,∴∠OBE=∠ABD.[等角的余角相等]显然有:∠

如图所示,在圆O中,CD是直径,AB是弦,AB⊥CD于M,

因为AB⊥CD,AM=½AC所以角MAC是30度连接CAOA则角AOD=角CAO+角ACO=60度所以AO=AM除以根号3再乘以2=2倍根号3(有一个角是30度的直角三角形中)所以CD=

在圆O中,直径CD垂直于弦AB于E点,(1)若AB=8,OE=3,求圆O的半径;(2)若CD=10,DE=2,求AB的长

1.连接OB因为ab垂直cd所以be=4在Rt三角形OEB中OB=52.因为CD=10DE=2所以OD=OB=5OE=3所以BE=4所以AB=83.你题写错了无解

如图在圆O中,AB,CD是两弦,且AB>CD,OE⊥AB于点E,OF⊥CD于点F.求证OE

证明:∵OE⊥AB∴AE=AB/2∴OE²=OA²-AE²∵OF⊥CD∴CF=CD/2∴OF²=OC²-CF²∴OE²-OF

如图,在⊙O中,AB是直径,弦CD⊥AB于点H,E为AB延长线上一点,CE交⊙O于点F;

(1)证明:连BD,∵四边形BDCE是⊙O的内接四边形,∴∠CDB+∠CFB=180°,∵∠EFB+∠CFB=180°,∴∠EFB=∠CDB,∵AB是直径,弦CD⊥AB,∴CB=DB,∴∠DFB=∠C

如图,在圆O中,AB,CD是两弦,且AB>CD,OE垂直于AB于点E,OF垂直于CD于点F,求证O

做辅助线,连接OA=OB=OC=OD,因为AB大于CD,所以角OAB和角OBA小于角OCD和角ODC,所以OE小于OF.

如图,AB是圆O的直径,CD⊥AB于点E,交圆O于点D,OF⊥AC于点F.

这个很简单的.我想你要自己学会思考问题.这是一种能力,因为日后的生活中,很问题都自己去思考.到了高中,几何和函数一体的.所以你得自己去弄明白.(1):第一条:∵AB是直径,∴∠ACB=90'根据勾股定

已知:AB是圆O的直径,弦CD⊥AB于点G,E是直径AB上一点,直线DE交圆O于点F,

连结AD则∠ADC=∠AGCAC=AD,所以∠ACD=∠ADCCF=AF,所以∠ACD=∠CAF所以∠ADC=∠CAF所以∠AGC=∠CAF所以,CG=AC

如图,C在圆O弦AB延长线上,CB=AB,CD切圆O于点D,CD=6根号2,直径MF⊥AB于点E,且E为OF中点,求圆O

切线CD方=CB*CA由于CB=AB,所以AB=6;直径MF⊥AB于点E,且E为OF中点可知角AOB=120°,所以半径r=2根号3

如图在半径为4的圆O中,AB.CD是两条直径,M为OB的中点,CM的延长线交圆O于点E

)这是相交弦定理,连AC,EB,因∠CAB=∠CEB,又有对顶角故三角形AMC∽EMB,所以AM*MB=EM*MC2)在直角三角形CDE中,CE=√(CD^2-DE^2)=√(64-15)=7EM=A

在⊙O中,AB是直径,CD是弦,CE⊥CD于点C,交AB于点E,DF⊥CD于点D,交AB于点F求证:AE=BF

就是梯形的中位线定理,又叫平行线等分线段定理,这个在初中教材是删掉了的意思是说在几条平行线间,任意的线段被等分的比例是相等的,最典型的例子是练习本的格子,你拿一把尺子,让尺子的一边被格子线等分,然后你