在圆O中AB为弦,C为圆上的一动点AG FB最大值为10.5

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 13:46:46
在圆O中AB为弦,C为圆上的一动点AG FB最大值为10.5
如图,在三角形ABC中,∠C=90°,AB的中点为O.(1)求证:A、B、C三点在以O为圆心的圆上;(2)若∠ADB=9

直角三角形斜边上的中线等于斜边的一半,用这一个结论就可以证明你的两个问题.这个结论无需再证明.第一个问题,CO为直角三角形ACB斜边AB的中线,故CO=AB/2=AO=BO,则证明O到A、B、C,3点

如图,在三角形ABC中,∠C=90°,AB的中点为O,(1)求证:A,B,C三点在以O为圆心的圆上)(2)若∠ADB=9

O为AB中点,所以OA=OB=OC,所以ABC在O的圆上连OD,OD=OB=OC=OA,四点共圆再问:我要过程再答:再简单不过了,总不能把定理再证明一遍吧.在Rt△ABC中,∠C=90度O为AB中点作

已知Rt三角形ABC中,角c=90度,点o在AB上,以o为圆心OA为半径的圆与AC、AB分别交于点D、E,且角A=角CB

1.在圆O中因为AE是圆O的直径,得到三角形ADE是直角三角形,即AD⊥DE由AC⊥CB得DE∥CB,从而∠DBC=∠EDB,由条件∠A=∠DBC=∠EDB得,在圆O中∠A=∠EDB,从而DB为圆O的

如图,在圆O中,AB是弦,C为弧AB的中点,若BC=2倍的根号3,O到AB的距离为1.求圆O的半径

连接OC,交AB于D,连接OB∵C是弧AB的中点∴OC⊥AB(平分弧对直径垂直于弧所对的弦)则OD=1,设OB=OC=r,CD=r-1DB²=OB²-OD²DB²

如图;AB为圆O的直径,C为圆O上一点,连接AC,BC,E为圆O上一点,且BC=CE,点F在BE上,CF⊥AB于D.1求

题目条件应该打错,是BE=CE(1)证明:AB是直径,∴∠ACB=90°∠A+∠ABC=90°∵CD⊥AB,∴∠BCD+∠ABC=90°∴∠A=∠BCD又∵∠A和∠E所对都是BC弧,∠A=∠E∴∠BC

如图所示,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交于点D,E,且∠C

答:直线BD与⊙O相切.证明:连接OD,∵OA=OD∴∠A=∠ADO∵∠C=90°,∴∠CBD+∠CDB=90°又∵∠CBD=∠A,∴∠ADO+∠CDB=90°,∴∠ODB=90°.∴直线BD与⊙O相

在圆O中AB为弦,C,D是直线AB上的两点,AC=BD,垂线OH垂直于CD,求证;三角形OCD为等腰三角形.

连接OA.OB先证明三角形OAH全等于三角形OBH(HL)再证明三角形AOC全等于三角形OBD所以三角形OCD为等腰三角形.

AB为圆O的一固定直径,它圆O分成上下两个半圆,自上半圆上一点C作弦CD垂直AB,角OCD的平分线交圆O于点P,

作OC的反向延长线交弧APB于点E,∵CD⊥AB∴弧CA=弧CD∵角COA=角BOE∴弧CA=弧BE∴弧AD=弧BE∵CP是角OCD的角平分线∴角DPC=角ECP∴弧DP=弧EP∴弧AD+弧DP=弧B

在圆O中,AB为直径,C、D为圆O上的两点,且C、D在AB两侧,OC⊥AB,求证:CD平分∠ACB

如图:∠AOC=∠BOC=90º∠ADC=1/2∠AOC∠BDC=1/2∠BOC∴∠ADC=∠BDC∴CD平分∠ADB

已知,如图,在RT三角形ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC为半径的圆与AC、AB分

BD与圆O相切证明:连结ODOA=OD∴∠A=∠ODA∵∠CBD=∠A∴∠ODA=∠CBD∵∠CDB+∠CBD=90°∴∠CDB+∠ODA=90°∴∠ODB=90°∵OD是圆O的半径∴DB与圆O相切2

在Rt△ABC中,∠C=90度,点O在AB上,以O为圆心,OA长为半径的圆与AC、AB分别交于D、E,且∠CBD=∠A.

不知道咋么做,你还是加大悬赏分吧,这样对回答者而言,更具诱惑力

(2014•犍为县一模)如图在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC、AB,分别

(1)直线BD与⊙O相切.(1分)证明:如图,连接OD.∵OA=OD∴∠A=∠ADO∵∠C=90°,∴∠CBD+∠CDB=90°又∵∠CBD=∠A∴∠ADO+∠CDB=90°∴∠ODB=90°∴直线B

在圆o中,c,d是直径ab上两点 且ac=bd ,mc⊥ab nd⊥ab m,n在○o上若c,d分别为oa,ob 的中点

证明:连接ON、OM,因为ND垂直OB,且D为OB中点,所以由三角形三线合一可得到ON=BN,而在园中有ON=OB,所以三角形OBN为等边三角形;同理三角形OAM也为等边三角形.从而以得到AM=NB=

(2008•北京)已知:如图,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别

(1)直线BD与⊙O相切.证明:如图,连接OD.∵OA=OD∴∠A=∠ADO∵∠C=90°,∴∠CBD+∠CDB=90°又∵∠CBD=∠A∴∠ADO+∠CDB=90°∴∠ODB=90°∴直线BD与⊙O

已知圆O的半径为10,弦AB的长为10根号3,点C在圆O上,且点C到弦AB所在直线的距离为5

结合垂径定理和勾股定理可求得O到AB距离也是5当C和O在AB同侧时,图形是梯形面积为25+25根号3当C和O在AB异侧时,图形是菱形面积为50根号3

已知:在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC、AB分别交于点D、E,且∠CBD

(1)相切.故答案为:相切.(2)证明:连接OD,∵AE是⊙O的直径,∴∠ADE=90°,∴∠A+∠AED=90°,∵∠C=90°,∴∠ADE=∠C,∴DE∥BC,∴∠EDB=∠CBD,∵∠CBD=∠

如图在半径为2的圆o中,AP是圆心O的切线,OP与弦AB交于点C,点C为AB中点,∠P=30°,则CP的长度为

/>∵C是AB的中点∴OP⊥AB【垂径定理逆定理:平分弦(除直径外的弦)的直径垂直于弦】∵AP是⊙O的直径∴∠OAP=90°∵∠P=30°∴OP=2OA=4∵∠OAC=∠P=30°(同余角∠AOC)∴

已知,如图,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心.OA长为半径的圆与AC,AB分别交于点D,E,且∠

AD:AE=8:10连接deade相似于abc折AC:AB=8:10分别设为8x10x勾股定理后面就简单啦88