在圆o中,弦ab=cd,延长ba,dc,两者相交于点p,e是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 11:06:53
在圆o中,弦ab=cd,延长ba,dc,两者相交于点p,e是
如图AB是圆O的直径,弦CD垂直AB于点H,G是圆O上一点,E点在CD的延长线上,连结EG交AB的延长线于F,KE=GE

1、连接OG∵KE=GE∴∠EGK=∠EKG=∠AKH∵OA=OO,那么∠OAG=∠OGA=∠HAK∵AB⊥AD,那么∠AHK=90°∴∠AKH+∠HAK=90°即∠EGK+∠OGA=90°∴∠OGE

在圆O中,C为劣弧AB的中点,连接AC并延长至点D,使CD=CA,连接DB,并延长交圆O于点E,连接AE

在圆O中连接BC,因为C为劣弧AB的中点,可以得出AC=BC,所以角CAB=角CBA,又因为AC=DC故DC=BC,所以角CBD=角D,因为A、C、D、在一条直线上所以三角形ABD内角和为180°,即

已知:在⊙O中,弦AB=CD,延长AB到E,延长CD到F,使BE=DF.求证:EF的垂直平分线经过点O

做OP垂直AB于POQ垂直CD于Q连接OEOF则OP=OQ再得OE=OF得O在EF的垂直平分线上

已知,在圆O中,直径AB垂直弦CD于G,E是CD延长线上一点,AE交圆O于F 求证角AFC=角DFE

连接AC、BC∵AB是直径∴∠ACB=90°∴∠BAC+∠ABC=90°∵AB⊥CD∴∠BAC+∠ACD=90°∴∠ABC=∠ACD∵F、A、C、B四点共圆∴∠AFC=∠ABC∵F、A、C、D四点共圆

如图 已知:圆O中 弦AB垂直于弦CD AB弧=CD弧 连结CO 延长CO 交AB于E 连结AO 交CD于点F 求证:

证明:(1)延长AO,交⊙O于N,延长CE,交⊙O于M,连接BN,DM则∠D=∠B=90°∵弧AC=弧BD∴弧AB=弧CD∴AB=CD∵AN=CM∴△ABN≌△CDM∴∠A=∠C∵∠A+∠AFD=90

有关圆周角如图,A、B、C、三点在圆O上,CD是圆O的直径,CD⊥AB于D(1)求证:∠ACD=∠BCE;(2)延长CD

此题有两个地方的字母打错了.正确的应该是:如图,A、B、C、三点在圆O上,CE是圆O的直径,CD⊥AB于D(1)求证:∠ACD=∠BCE;(2)延长CD交圆O于F,连接AE、BF,求证:AE=BF证明

切割线定理如图,在圆O中,AB是弦,CD为直径,AB垂直CD,H是垂足,点P在DC的延长线上,且角PAH=角POA,OH

∵角PAH=角POA,角PHA=90,∴角PAO=90°∴PA是⊙O的切线设⊙O的半径为3x,则AH^2=(3x)^2-x^2=8x^2AP^2=8x^2+(6+2x)^2=12x^2+24x+36由

已知:如图,在圆O中,直径AB垂直于弦CD于G,E是CD延长线上一点,AE交圆O与F,求证:∠AFC=∠DFE.)

连接AC∵AB是直径AB⊥CD∴AC=AD∴∠ACD=∠ADC∵∠AFC=∠ADC∠ACD=∠DFE∴:∠AFC=∠DFE

在圆O中,弦AB=CD,延长AB到E,延长CD到F,使BE=DF,求证:EF的垂直平分线经过点O

过点O分别作OM⊥AE与E,ON⊥CF与N因为弦AB=CD所以弦心距OM=ON且BM=ND因为BE=DF所以BE+BM=DF+DNME=NF所以△EMO≌△FNOOE=OF可证O在EF的中垂线上

圆o中弦AB垂直于直径CD于F,E在AB上【1】求AC平方=AE*AB【2】延长EC到P,连PB=PE,试判断PB与圆o

连接BC因为弦AB垂直直径CD所以AC=CB所以角CAB=角CBA因为EA=EC所以角EAC=角ACE所以等腰三角型ACE相似于等腰三角型ABC所以AC:EC=AB:AC即AC方=EC*AB因为EA=

如图,在圆O中,弦CD与直径AB垂直于H点,E是AB延长线上一点,CE交圆O于F点

(1)证明:连接FA.∵AB为圆O直径,所以∠AFB=90°,∴∠AFD+∠DFB=90°,∠CFA+∠BFE=90°.∵弦CD与直径AB垂直于H,∴由垂径定理,得弧CA=弧DA,∴∠CFA=DFA.

在圆O中.弦AB,CD相交于AB的中点E 连接AD并延长至点F,使DF=AD连接BC,BF

∵E为AB中点D为AF中点∴DE//BFDE=1/2FB∵BE/FB=5/8∴BE/DE=5/(8/2)=5/4∵△AED∽△CEB∴CB/AD=BE/DE=5/4

数学高手进如图,在圆O中,直径AB垂直直径CD,以B为圆心,以BC为半径作圆B交AB于E,交AB延长线于F,连CB并延长

_设圆O半径为r,圆B半径为R.则R=√2rS=½πr²+¼πR²-½*2r²=(π-1)r²连结BN,AC,△MNB∽△MCA,

如图,在圆O中,弦AB.CD相交于AB的中点E,连结AD并延长至F,使DF=AD,连结BC.BF.

1)D,E分别为AB,AF中点所以:DE平行BF所以∠AED=∠AEF,∠ADE=∠AFE因为∠AED=∠CEB,∠ADE=∠EBC(圆周角)所以:∠CBE=∠AEF,∠EBC=∠AFE所以:△CBE

如图,在⊙O中,弦AB=CD,延长AB到点E,延长CD到点F,使得BE=DF,过点O作OP⊥EF,垂足为点P.求证:PE

证明:作OM垂直AB于M,ON垂直CD于N,连接OE,OF.则BM=AB/2;DN=CD/2.AB=CD,则BM=DN;,因为OB=OD,所以:⊿OBM≌ΔODN,则OM=ON又BE=DF,则BM+B

在⊙O中,AC、CD是⊙O中的两条弦,AC=CD,延长AC质点P,使CP=AC,连结PD并延长交⊙O于B点,AB是⊙O的

证明:△ADP中,AC=CP=CD,则∠ADP=90°,即∠ADB=90°,所以AB是⊙O的直径.证毕.再问:谢谢你了

如图,在圆O中,弦CD垂直于直径AB,在DC的延长线上取一点E,若AE与圆O的交点为F,求证;∠AFC=∠DFE

因为 直径AB⊥弦CD所以 ∠COB=∠BOD连接BF 则  BF⊥AE   ∠CFB=∠BFD因为∠EFB=∠BFA=

CD为圆O的弦,在CD上取CE=DF,连接OE,OF,并延长交圆O于点A,B.求证弧AB=弧BD

连接OC,ODOC=OD=半径所以△OCD为等腰三角形∠OCD=∠ODC又因为CE=FD所以△OCE≌△ODF所以角COA=角DOB所以弧CA=弧BD

如图,C在圆O弦AB延长线上,CB=AB,CD切圆O于点D,CD=6根号2,直径MF⊥AB于点E,且E为OF中点,求圆O

切线CD方=CB*CA由于CB=AB,所以AB=6;直径MF⊥AB于点E,且E为OF中点可知角AOB=120°,所以半径r=2根号3