在四边形abcd中 已知AB为6,AD为四边形ABCD周长的七分之二,求BC的长
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 22:54:40
∵∠B=90º,AB=2,BC=1∴AC=√(2²+1²)=√5∵CD=1,AD=√6∴AC²+CD²=AD²∴∠ACD=90°∴S四边形A
面积=6*8/2+8*15/2=84
连接AC则cosB=(AB^2+BC^2-AC^2)/2AB*BC=(40-AC^2)/24cosD=(AD^2+CD^2-AC^2)/2AD*CD=(32-AC^2)/32ABCD内接于圆所以B和D
连结AD中点O.连结OE、OF,则在三角形ADC中,有OF=AC/2,同理,在三角形ABD中,有OE=BD/2,而EF≤OE+OF=(AC+BD)/2,所以2EF≤AC+BD.(等号当O、E、F成一直
连接BD,∵AB=AD,∠A=60°∴△ABD是等边三角形∴BD=AB=8,∠ADB=60°∴∠ADC=150°-60°=90°∵因为四边形周长是32∴BC+CD=32-8-8=16∵在直角三角形中B
AB=CD,AC=BD,可推出△ABC全等于△DCB同理,△ABD全等于△DCA则,∠DAB=∠ADC,∠ABC=∠DCB由四边形内角和可得,∠DAB+∠ABC=180°由三角形内角和为180°,可得
不可以~你已知的是AB∥CD,在四边形ABCD中,则∠B+∠C=180度,∠A+∠D=180度又因为∠A=∠C;所以∠B=∠D;所以∠B+∠A=180度,∠C+∠D=180度;所以AD∥BC;∴四边形
证明一:∵四边形ABCD是平行四边形∴AB∥CDAB=CD∵E,F分别为AB,DC的中点∴DF=CD/2BE=AB/2∴BE=DF∵BE∥DF∴四边形DEBF是平行四边形证明二:∵四边形ABCD是平行
证明:∵AB+CD≤AC+CD∴AB≤AC
做题目,最重要的就是要找题目所隐藏的条件,请看:由AB=AD=8,角A=60度可知BD=AD=AB由角D=150度又可知角BDC=150-60=90度再来看因为四边形内角和为180度我们就可以得出角C
连接BD∵AB=AD=8,∠A=60°∴△ABD是等边三角形,∴BD=AB=8,∠ADB=60°又∵∠ADC=150°四边形ABCD的周长为32,∴BC+DC=32-BD-AB=16,∠BDC=90°
连接BD∵AB=AD,∠A=60度∴△ABD是等边三角形∴∠ADB=60°∵∠ADC=150°∴∠CDB=90°∵等边三角形ABD的边长为8易得△ABD的面积=16√3∵ABCD周长=32∴BC+CD
设BC=X,那么CD=四边形的周长-AB-AD-BC=30-6-6-X=18-X连接BD在三角形ABD中∵AB=AD=6,∠A=60°∴∠ABD=∠ADB=1/2(180°-∠A)=1/2(180°-
在BC边上取一点E,使BE=AB,则三角形ABD全等三角形DBC,角DEC等于1/2角ABC+1/2角ADE,因为AD=DE=DC,则角DEC=角C.所以角ABC+角ADC=三角形DEC的内角和180
可补充的条件是AB=CD或AD∥BC,理由是:∵在四边形ABCD中,已知AB∥CD,∴根据平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形,可补充一个条件AB=CD.∵AB∥CD,AD∥C
∵四边形ABCD中,AB=DC,AC=DB,BC=BC,∴△ABC≌△DCB,∴∠ABC=∠DCB.同理得∠BAD=∠CDA.∵∠ABC+∠BCD+∠CDA+∠BAD=360,∴2(∠BAD+∠ABC
平行四边形分别连接AC,BDP,N分别为AB,AD中点,M,Q分别为DC,BC中点所以PN,MQ分别平行于BD即PN,MQ平行连接AC,同理证明MN平行PQ
连接ACAB=AD->绕A点旋转△ACD,使D点与B点重合,C点转至C'->∠ABC'=∠ADC,AC=AC',∠CAC'=∠BAD=90°四边形ABCD中∠BAD=∠C=90°->∠ABC+∠ADC
因为角1=角2,AC=BD,AB=BA,那么三角形ABC全等于三角形BAD,所以BC=AD=CD,角CBA=角DAB,又因为AC垂直BC,所以角ADB=角BCA=90度又因为角1=角2,所以角DAC=
连接BD∵AB=AD,∠A=60度∴△ABD是等边三角形∴∠ADB=60°∵∠ADC=150°∴∠CDB=90°∵等边三角形ABD的边长为8易得△ABD的面积=16√3∵ABCD周长=32∴BC+CD