在四棱锥p abcd中,角abc=角acd=90,角bac=角cad=60度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 00:05:19
在四棱锥p abcd中,角abc=角acd=90,角bac=角cad=60度
四棱锥PABCD中,侧面PAD是边长为2的正三角形,底面ABCD为菱形,角BAD为60度,若PB为3,求二面角A—BC—

从P向下做辅助线,正好垂直和底面棱形中点相交,设为点O.而且题中所有的三角形为正三角形很好算好O点到各点的距离,再以边角边的中点分别连接O.P,以此计算.

空间向量与立体几何在底面是菱形的四棱锥P-ABCD中,角ABC=六十度,PA=AC=a,PB=PD=根号2a,点E在PD

提示:先证明PA⊥平面ABCD(用勾股定理证明PA⊥AB,PA⊥AD);以AB、AD、AP为轴建立空间直角坐标系,分别求出平面EAC及平面DAC的法向量,然后求出两个法向量夹角余弦的绝对值即可.

在底面为直角梯形的四棱锥P--ABCD中,AD//BC,角ABC+90度,PA垂直平面ABCD,PA=3,AD=2,

1、设BD和AC交于O,在平面ABCD上作DE//DC,交BC延长线于E,则四边形ADEC是平行四边形,CE=AD=2,BE=BC+CE=8,〈ABC=〈BAD=90°,根据勾股定理,AC=4√3,D

如图,在四棱锥s—abc中,底面abcd是矩形,sa垂直于底面abcd

证明:1.连结AC.BD,交于点O,连结MO易知点O是BD的中点又点M是SD的中点,则在△SBD中有:OM//SB因为OM在平面ACM内,SB不在平面ACM内所以由线面平行的判定定理可得:SB//平面

在四棱锥P-ABCD中,侧面PAD是正三角形,且垂直于底面ABCD,底面ABC是边长为2的菱形,角BAD为60,M为PC

1、连结AC、BD,交于O点,连结OM,∵四边形ABCD是菱形,∴AO=CO,(菱形对角线互相垂直平分),∵PM=CM,(已知),∴OM是△CAP的中位线,∴PA//OM,∵OM∈平面BDM,∴PA/

在四棱锥p-abcd中,已知pa垂直平面abcd,PB与平面ABC成60度的角,底面ABCD是直角梯形,角ABC=角BA

1.连AC∵∠ABC=∠BAD=90°AB=BC=AD/2∴CD⊥AC∵PA⊥面ABCD∴PA⊥CD∴CD⊥面PAC又CD∈面PCD∴面PCD⊥面PAC2.延长DA至F,使AF=AB,连PF则∠BPF

在四棱锥PABCD中,四边形ABCD是菱形PA=PC E为PB中点

你可以画个草图分析1,连接BD交AC、于F点,再连接EF在三角形PBD中EF卫中位线所以EF平行于PD所以PD平行平面AEC2连接PF因为PA=PC所以三角形PAC为等腰三角形所以PF垂直于ACAC垂

如图在四棱锥PABCD中,底面ABCD为平行四边形,O为AC的中点,M为PD的中点,求证:PB∥平面ACM

连接BD,OM.在平行四边形ABCD中,O是BD的中点,又因为M是PD的中点,所以,在三角形PBD中,MO//PB,又因为MO在平面ACM内,BP不在平面ACM内,所以PB//平面ACM(因为大部分符

已知四棱锥P-ABCD中,底面ABCD是直角梯形,AB//DC,角ABC=45度,DC=1,AB=2,PA垂直平面ABC

第一问,AB平行于CD,而CD属于平面PCD,所以AB平行于PCD第二问,因为BCA是一个等腰直角三角形,所以BC垂直于AC,而AC属于平面PAC.另外PA垂直于底面,而BC属于底面,所以BC又垂直于

在四棱锥P -ABCD中,底面ABCD是菱形,角ABC=60度,PA垂直平面ABCD,点M,N分别为BC,PA的中点

(1)连AM,底面ABCD是菱形,角ABC=60度,M是BC的中点,∴AM⊥BC,PA垂直平面ABCD,∴PA⊥BC,∴BC垂直平面PAM(即平面AMN).(2)PA=PB=2=AC,∴PB=PC=P

如图,在四棱锥P--ABCD中,PA垂直平面ABCD,AB=4,BC=3,AD=5,角DAB=角ABC=90度,E是CD

射影定理.已知:∠DAB=90°,又证得:BG⊥AE.∴在△ABG中,AB⊥AG、F∈BG且AF⊥BG,∴由射影定理,有:AB^2=BF×BG,∴BF=AB^2/BG.

如图,在四棱锥Pabcd中,pa⊥平面abcd,底面abcd是菱形,ab=2,∠bad=60度.1.求证bd⊥平面p~c

1、设AC和BD交于O,∵PA⊥平面ABCD,BD∈平面ABCD,∴PA⊥BD,∵四边形ABCD是菱形,∴BD⊥AC,(菱形对角线互相垂直平分),∵AO∩PA=A,∴BD⊥平面PAC,2、PA=AB,

在底面是平行四边形的四棱锥P--ABCD中,

(1)PA⊥面ABCD,AC属于面ABCD,所以PA⊥AC   又AB⊥AC,因此AC⊥面PAB,PB属于面PAB,因此AC⊥PB(2)连接BD和AC,其交点为O,连接E

几何解法在底面是棱形的四棱锥P-ABCD中,角ABC=60°,PA=PC=a,PB=PD=根号2a,点E在PD上,且PE

如图,O为ABCD中心,H,G是PD,BC中点.从O出发,作射线,规定射线与ACE的夹角为代数值,射线在平面ACE之上方时,夹角为正(例如图中的OH),射线在平面ACE之下方时,夹角为负(例如图中的O

已知四棱锥pabcd中,底面四边形为正方形,侧面pdc为正三角形,且pdc⊥abcd,e为pc中点.

证明:(1)连接AC交BD于点O,连接EO因为:ABCD是正方形所以:AC⊥BD,点O是AC的中点因为:点E是PC的中点所以:EO是三角形APC的中位线所以:EO//AP又因为:EO是平面APC和平面

在四棱锥P-ABCD中,角ABC=角ACD=90°,角BAC=角CAD=60°PA垂直面ABCD,E为PD的中点,PA=

(1)V=1/3×PA×S底S底=S△ABC+S△ACD=1/2×1×根号3+1/2×2×2倍根号3=二分之五倍根号三所以V=1/3×2×二分之五倍根号三=三分之五倍根号三(2)连结EF因为E、F分别

在四棱锥P-ABCD中,底面AB

解题思路:确定好各点的坐标。解题过程:最终答案:略

急求!在四棱锥P-ABCD中,底面为菱形且角ABC=60度,PA垂直于平面ABCD

(1)因为PA⊥面ABCD,所以PA⊥BC.又AB=2=BC,∠ABC=60度,可知AM⊥BC,故BC垂直平面AMN.(2)这太容易了,1/3Sh即可.(3)E为PD中点,PE=根号2.向量法总该会把

四棱锥PABCD,底面ABCD是平行四边形,向量AB(2,-1,-4) AD(4,2,0) AP(-1,2,-1) 求四

向量AP·AB=0AP·AD=0∴AP为四棱锥的高,|AP|=√6可求|AB|=√21|AD|=2√5向量AB·AD=6=|AB||AD|cos∠BAD∴cos∠BAD=3/√105∴sin∠BAD=