在三角形abc中de分别为边BCAD的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:36:28
1,2a2=2b2+bc+2c2+bc即(b2+c2-a2)/2bc=-1/2cosA=-1/2A=120°2.sinB+sin(60-B)=1解得B=30或B=120(舍去)故C=30故三角形为等腰
1解由正弦定理sinC/sinA=2b-c/a=c/a即2b-c=c即b=c即三角形ABC是等腰三角形2由(1)知b=c=2,又由三角形ABC的周长为7即a+b+c=7即a=3即cosA=(b^2+c
2b=a+c,sinB/b=sinA/a=sinC/c=(sinA+sinC)/a+c;求和公式.所以sinA+sinC=根号2;自己算算下面应该会了吧再问:好长时间没做高中题了,基本都忘了,能帮忙做
tan(A+B)=2因为C=180º-(A+B)所以,tanC=-tan(A+B)tanC=-2sinC=-2cosC=-2√(1-sin²C)sin²C=4-4sin&
解由a=6,c=5B=60度相当于知三角形的两边与其夹角,故该三角形唯一确定,故此三角形只有一解再问:如果是a=14,b=16,A=45度此三角形有几解再答:由b×sinA=16×√2/2=8√2知b
∵bcosB+ccosC=acosA∴sinAcosA=sinBcosB+sinCcosC∴sin2A=sin2B+sin2C∴sin2A=2sin(B+C)cos(B-C)∴2sinAcosA-2s
cosA=(b^2+c^2-a^2)/2bc=(sinB^2+sinC^2-sinA^2)/2sinBsinC=4/5sinB=(根号3)/2sinA=3/5代入求解吧
在三角形ABC中,有正弦定理知:b/sinB=c/sinC即:b/c=sinB/sinC又因为:c=b(1+2cosA)所以:b/c=1/(1+2cosA)所以:sinB/sinC=1/(1+2cos
a:b=3:4,因此a:b:c=3:4:5,因为c=10,所以a=6,b=8,所求面积为24再问:为什么因此a:b:c=3:4:5、我在预习、所以有很多地方不懂、、能指教一下吗再答:设a=3k,b=4
(1)a/sinA=b/sinB根号3a=2bsinAa/sinA=2b/根号3=b/sinBsinB=根号3/2角B=60°(2)cosB=(a^2+c^2-b^2)/2ac=cos60°=1/2(
∵DE∥BC∴∠B=∠ADE∵∠CED是△ADE的外角∴∠CED=∠A+∠ADE即∠CED=∠A+∠B
∵c的平方-c的平方+bc=b的平方∴b的平方+c的平方-c的平方=bc∵b的平方+c的平方-c的平方=2bccosA∴2bccosA=bc∴A=60°
由正弦定理可得:a/sinA=b/sinB=c/sinC=2R代入(2c-b)cosA-acosb(2sinC-sinB)cosA=sinAcosB2sinCcosA=sin(A+B)=sinCcos
证明:∵∠AEC=∠CDA=90°∴A、D、E、C四点共圆,∴∠BED=∠BAC.又∵∠B为公共角∴△BED∽△BAC,∴DE/AC=BD/BC.在Rt△BDC中,∠B=60°∴BD=1/2BC,∴D
由三角形余弦公式可知cosB=(a2+c2-b2)/2ac∵a=(√3/2)b,b=c令b=c=k∴a=(√3/2)k∴cosB=(a2+c2-b2)/2ac=[((√3/2)k)2+k2-k2]/[
由正弦定理a^2-b^2/c^2=[(sinA)^2-(sinB)^2]/(sinC)^2=sin(A+B)sin(A-B)/(sinC)^2=sinCsin(A-B)/(sinC)^2=sin(A-
由a²+c²-b²=2ac*cosB即(b^2-a^2-c^2)/ac=-2cosBcos(A+C)/sinAcosA=-cosB/sinAcosA则有2sinAcosA
证明:∵D,E分别是AB,AC的中点∴DE是△ABC的中位线∴BC=2DE,BC//DE∵BE=2DE,EF=BE∴BC=BE=EF∵BC//EF∴四边形BCFE是平行四边形(又一组对边平行且相等的四