在三角形abc中BE垂直AC与点E,CD垂直AB于点D连接DE
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 02:11:40
∵CD垂直AB,BE垂直AC∴∠ADC=∠BDC=∠BEC=90°∴∠ABE+∠DFB=∠ACD+∠CFE=90°∵∠BFD=∠CFE∴∠ABE=∠ACD∵∠BDC=90°∠ABC=45°∴∠DCB=
证明:因为CD垂直AB所以角BDC=角ADC=90度因为角BDC+角ABC+角DCB=180度角ABC=45度所以角DCB=45度所以角ABC=角DCB=45度所以BD=CD因为角ADC+角ACD+角
∵BE平分角ABC,且BE垂直AC于点E,∴根据等腰三角形"三线合一",可知,三角形ABC是等腰三角形;AB=BC..∠BAC=∠BCA又∵∠ABC=45°,∴∠BAC=∠BCA=(180°-45°)
F应该是AD与BE的交点吧?即垂心,S△ABC=AD*BC/2,S△ABC=AC*BE/2,AD*BC=AC*BE,AC=BF,AD*BC=BF*BE,(1)∵BE⊥AC,AD⊥BC,〈FBD=〈CB
证明:连接ME、MF∵∠BEC=90°,M是BC的中点∴ME=1/2BC(直角三角形斜边中线等于斜边一半)同理可得MF=1/2BC∴ME=MF∵N是EF的中点∴MN⊥EF(等腰三角形三线合一)
∵AD⊥BC,BE⊥AC∴∠ADB=∠ADC=∠AEB=90°∴∠DBF+∠BFD=90°∠AFE+∠CAD=90°∠AFE=∠BFD∴∠DBF=∠CAD∵∠BDF=∠ADCBF=AC∴△BDF≌△A
在Rt△BEC和Rt△ADC中,因为∠C为公共角,所以∠EBC=∠CAD又因为在Rt△BHD和Rt△ADC中,斜边BH=AC,所以Rt△BHD和Rt△ADC是全等三角形所以BD=AD,HD=DC则Rt
∵AD=AC,BE=BC.∴∠ACD=∠ADC,∠BCE=∠BEC,∴∠ACD+∠BCE=∠ADC+∠BEC=180°-∠ECD,另一方面∠ACD+∠BCE=∠ACB+∠ECD=90°+∠ECD,∴9
这是初2的问题,包括全等和相似等知识!很典型!做类似的问题首先要画图这点很重要!首先这是一个等边三角形!证:因为AB=AC所以角ABC=角ACB,又因为DC垂直AB于DBE垂直AC与E所以角BDE=角
以CB为直角边画圆,E,F在圆上.∠BCF=∠BEF,∠CBE=∠CFE.∠AEF=90°-∠BEF,∠CBA=90°-BCF,∴∠AEF=∠CBA.同理,∠AEF=∠CBA.所以ACB∽AEF
证明:∵AD=BD,AC=BH.∴Rt⊿ADC≌Rt⊿BDH(HL),DC=DH.又∵AD⊥BC.∴∠ABD=∠DCH=45°.即∠ABC=∠BCH.
因为CE⊥AB,BF⊥AC,有∠AFB=∠AEC=90度;又∠A=∠A,那么有△ABF相似于△AEC,得出AE/AF=AC/AB,又∠A=∠A.得出三角形AEF相似三角形ACB.
四边形内角和为:(4-2)×180°=2×180°=360°在四边形ADPE中:角A+角DPE+90+90=360所以角A+角DPE=180又因为角DPE=角BPC所以角A+角BPC=180即角BPC
全等于利用直角三角形中的HL定理可证因为AB=AC且由BE垂直AC于E,CF垂直AB于F可得角AEB=角AFC=90度又因为角A为公共角,通过HL定理得证所以综上可得三角形ABE全等ACF
全等通过AAS可说明三角形ABE和三角形ACF全等从而说明AE=AF利用等量减等量差相等说明:BF=CE通过AAS就能说明三角形BDF全等于三角形CDE
MN⊥DE证明:连接NE,ND∵∠BEC=90°,N是BC中点∴NE=1/2BC∵∠BDC=90°,N是BC中点∴ND=1/2BC∴ND=NE∵M是DE的中点∴MN⊥DE不是中位线,是直角三角形斜边中
BE垂直AC,CD垂直AB角ADC=角AEB=90度角A=角AAB=AC三角形ADC全等于三角形AEBAD=AEAB=AC那么CD=BE