在三角形ABC 内任取一点P,连接PB ,PC .求证AB+AC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:32:02
证明:把⊿APB绕点A旋转至⊿ADC的位置(如图).则∠ADC=∠APB=∠APC;DC=PB,AD=AP.∴∠ADP=∠APD.∴∠CDP=∠CPD(等式性质)则PC=DC=PB.
边的垂直平分线的交点,外心
分别画每条线段的中垂线,它们会交于一点,那一点就是叫做外心我建议你可以去看看百度百科
选C如图所示,作AB的垂直平分线,①△ABC的外心P1为满足条件的一个点,②以点C为圆心,以AC长为半径画圆,P2、P3为满足条件的点,③分别以点A、B为圆心,以AC长为半径画圆,P4为满足条件的点,
证明已知ΔABC是直角三角形,AB为斜边,记AB=c,BC=a,CA=b.则有:c^2=a^2+b^2.(1)满足:S(PAB)=S(PBC)=S(PCA),易证P是RtΔABC的重心.设mc,ma,
取AB中点D、AC中点E,连接DE简单可得△ADE∽△ABC,DE∥BC,相似比为1:2所以两三角形的高也为1:2,因为平行线间处处距离相等,所以从线段DE上任取一点,到BC的距离都是△ABC高的一半
利用‘三角形的两边之和大于第三边’可得:PA+PB>ABPB+PC>BCPC+PA>CA将三式相加,得2(PA+PB+PC)>AB+BC+CAPB+PB+PC>(AB+BC+CA)/2延长BP于AC交
利用旋转,如图所示:
一楼的错,应该是内心作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F连接OD,OE,OF由勾股定理得:OD=OE=OFO到三角形ABC的三边距离相等故O是内心
证明:延长BP与AC边相交于点D,由三角形两边之和大于第三边得AB+AD>BD,PD+DC>PC,故AB+AD+PD+DC>BD+PC=PB+PD+PC,AB+AD+DC>PB+PC,即AB+AC>P
疑似::|PA|平方+|PB|平方==(5/9)AB^2设△ABC的边BC=a,AC=b,过P作PE⊥AC,PF⊥BC,垂足为E,F因为S三角形PAB=S三角形PBC=S三角形PCA所以△APC面积=
作三角形ABC任意两条边的中线,他们的交点即为重心,亦即所求的P点.证明:建立平面直角坐标系O-XY设点ABC的坐标分别为(X1,Y1)(X2,Y2)(X3,Y3)由重心坐标公式可得P[(X1+X2+
重心.理由如下:(以下PA等均表示向量,因为箭头打不出)PA^2+PB^2+PC^2=PA^2+(PA+AB)^2+(PA+AC)^2=PA^2+PA^2+AB^2+2PA*AB+PA^2+AC^2+
作辅助线,延长bp到ac,相交点为rab+ar>brcr+pr>cp然后相加ab+ar+cr+pr>br+cp由于ac=ar+crbr=bp+pr带入上不等式所以ab+ac>bp+cp
P是三角形ABC所在平面&外的一点,P到三角形ABC三边的距离相等,O为P在平面&内的射影,且在三角形ABC内.求证:O是三角形ABC的内心.
△A'B'C'和△ABC是相似的显然A'B'是△PAB的中位线所以A'B'‖AB同理B'C'‖BC,A'C'‖AC所以∠PA'B'=∠PAB,∠PA'C'=∠PAC而∠B'A'C'=∠PA'B'+∠P
这个就是要找三角形ABC的圆心.过任意两点,比如过A、B两点做中垂线,相交于一点P,然后用圆规以P为圆心,画一个三角形外接圆PA=PB=PC.是半径
6个我们老师讲过了再问:能不能给个过程啊?再答:分别作出三角形的三边的垂直平分线,三线交于同一点,这点就满足条件;A为圆心AB为半径画圆.以C为圆心CA为半径画圆.在AC左侧得一点.同理BC右侧一点.