在○o中,C为弧AB的中点,连结AC并延长
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 23:10:08
证明:方法一:连接AD、AE、BD、CE因为D、E分别是弧AB、AC的中点所以∠DAB=∠B=∠AED,∠ADE=∠C=∠CAE而∠AFG=∠ADE+∠DAB,∠AGF=∠CAE+∠AED所以∠AFG
连接MO交弦AB于点E,(1)∵OH⊥MN,O是圆心,∴MH=12MN,又∵MN=43cm,∴MH=23cm,在Rt△MOH中,OM=4cm,∴OH=OM2−MH2=42−(23)2=2(cm);(2
连结OC交AB于点DC为弧AB的中点,可得CO⊥AB设圆的半径为r对于三角形OAD,有OD^2+AD^2=OA^2对于三角形BCD,有BD^2+CD^2=BC^2DA=DB,可得OA^2-OD^2=B
连接OC,交AB于D,连接OB∵C是弧AB的中点∴OC⊥AB(平分弧对直径垂直于弧所对的弦)则OD=1,设OB=OC=r,CD=r-1DB²=OB²-OD²DB²
证明:连接OD,OE,则OD=OE,∠D=∠E;又D,E分别为弧AB,弧AC的中点,故OD⊥AB;OE⊥AC.∴∠DFB=∠EGC.(等角的余角相等)故:∠AFG=∠AGF(对顶角相等),得AF=AG
证:连接OD、OE,分别与AB、AC交于点M、N由垂径定理,OD⊥AB,OE⊥AC因为OD=OE,所以∠ODE=∠OED在RtΔMDF与RtΔNEG中∠MFD=90°-∠ODE∠NGE=90°-∠OE
要证明AF=AG,只需证∠AGF=∠AFG要证∠AGF=∠AFG,先连结CD,BE,知∠AGF=∠C+∠D,∠AFG=∠B+∠E,由于弧AD=弧BD弧CE=弧AE故∠C=∠E,∠D=∠B,即∠AGF=
前面的你都知道了对吧然后现在,OM=OA/2,然后AO=CO(都是半径),然后,OM=OC/2,所以M为CO中点,所以,CM=OM其余的答案上应该都有,楼主也能想出来对吧?
证明:∵C为AB的中点,OC为半径,∴PA=PB,AB⊥OC,∵AP=12AB=32AO,∴OP=AO2−AP2=AO2−34AO2=12OA=12OC,∴PC=12OC,即OP=PC,∴四边形OAC
设AB与CD相交于F因为C为弧ABC的中点CD为直径,所以AC=BC,弧AD=弧BD,AC=BD,所以三角形ACD全等于三角形BCD.角ACD=角BCD,又CD=CD,可知三角形ACF全等于三角形BC
∵C为弧AB的中点,∵AB⊥OC,∵AB=6cm,∴AD=12AB=3cm,设OA=r,则OD=r-CD=r-1,在Rt△AOD中,∵OA2=AD2+OD2,即r2=32+(r-1)2,解得r=5.
ab=2r角dob=45度角dab=45/2=22.5度角adb=67.5度db=2r*sin22.5度角cbd=67.5-45=22.5度de=db*tan22.5度=2r(sin22.5度)^2/
菱形因为c为弧ab的中点所以oc垂直于平分弦ab所以am等于2分之根号3倍oa且△oma为直角三角形所以∠oam为30°正弦定理得om等于2分之1oa所以mc等于2分之1oa勾股定理得ac等于oa同理
很高兴为您解答.可知:则AD=BD=(r根号3)/2直角三角形AOD中解得OD=r/2因此OD=DC=r/2所以四个直角三角形AOD,BOD,ADC,BDC全等所以四条边相等所以为菱形则面积=根三/2
证明:连接ON、OM,因为ND垂直OB,且D为OB中点,所以由三角形三线合一可得到ON=BN,而在园中有ON=OB,所以三角形OBN为等边三角形;同理三角形OAM也为等边三角形.从而以得到AM=NB=
首先,要做出三条辅助线,分别连接CD,CB,AC然后由题意可知,∠ACB为90°,且C为弧AB中点,所以AC=BC且由同弧所对的圆周角相等可得,∠EAC=∠CBD,且由题意可知,AE=BD由边角边定义
我把详细过程写在图片中了. 如果点M在优弧上,则为120°.
选C画出图后A,B,C三点连成的是三角形,弧AC=弧BC,AC=BC,三角形两边之和大于第三边∴a
:连接AC,BC因为点C为弧AB的中点所以弧AC=弧BC所以AC=BC因为OA=OBOC=OC所以三角形OAC和三角形OBC全等(SSS)所以角AOC=角BOC=1/2角AOB因为OA=OB所以角OA
/>∵C是AB的中点∴OP⊥AB【垂径定理逆定理:平分弦(除直径外的弦)的直径垂直于弦】∵AP是⊙O的直径∴∠OAP=90°∵∠P=30°∴OP=2OA=4∵∠OAC=∠P=30°(同余角∠AOC)∴