在△ABC中若a(bcosB-ccosC)=(b²-c²)cosA
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 10:40:07
由正弦定理:a/sinA=b/sinB所以asinB=bsinA由题意,acosA=bcosB两式相除.得sinBcosB=sinAcosA即sin2B=sin2A所以A=B或2(A+B)=π即A=B
直角三角形a/sinA=b/sinB=c/sinC=ta=tsinAb=tsinBc=tsinCacosA+bcosB=ccosCtsinAcosA+tsinBcosB=tsinCcosCsin2A+
∵acosA+bcosB=ccosC∴sinAcosA+sinBcosB=sinCcosC∴sin2A+sin2B=sin2C=sin(2π-2A-2B)=-sin(2A+2B)∴0=sin2A+si
∵cosA=b2+c2-a22bc,cosB=a2+c2-b22ac,∴b2+c2-a22bc•a=a2+c2-b22ac•b,化简得:a2c2-a4=b2c2-b4,即(a2-b2)c2=(a2-b
正弦定理:sinAcosA=sinBcosB所以sinAcosA-sinBcosB=0所以sin(A-B)=0所以A-B=0所以A=B所以是等腰三角形.
∵bcosB+ccosC=acosA,由正弦定理得:sinBcosB+sinCcosC=sinAcosA,即sin2B+sin2C=2sinAcosA,∴2sin(B+C)cos(B-C)=2sinA
∵a=2bcosC,由正弦定理可得,2sinBcosC=sinA=sin(B+C)=sinBcosC+cosBsinC,∴sinBcosC-cosBsinC=0,即sin(B-C)=0,∴B-C=0,
∵bcosB+ccosC=acosA∴sinAcosA=sinBcosB+sinCcosC∴sin2A=sin2B+sin2C∴sin2A=2sin(B+C)cos(B-C)∴2sinAcosA-2s
acosA=bcosB==>a/b=cosB/cosA==>sinA/sinB=cosB/cosA==>sinAcosA=sinBcosB==>sin2A=sin2B0(1)2A=2B,A=B.C=6
(Ⅰ)∵acosC,bcosB,ccosA成等差数列,∴acosC+ccosA=2bcosB,由正弦定理得,a=2RsinA,b=2RsinB,c=2RsinC,代入得:2RsinAcosC+2Rco
∵acosA+bcosB=ccosC∴sinAcosA+sinBcosB=sinCcosC∴sin2A+sin2B=sin2C=sin(2π-2A-2B)=-sin(2A+2B)∴0=sin2A+si
角A等于2角Ba/sinA=b/sinBa/sin2B=b/sinBsin2B=2sinBcosB所以a=2bcosB
cosA=(b平方+c平方-a平方)/2bc,同理可得cosb和cosc所以acosA+bcosB=ccosC可转化为(b平方+c平方-a平方)/2bc+(a平方+c平方-b平方)/2ac=(a平方+
cosA=(b^2+c^2-a^2)/2bccosB=(a^2+c^2-b^2)/2accosC=(a^2+b^2-c^2)/2abacosA+bcosB=ccosCa(b^2+c^2-a^2)/2b
acosa=bcosba/sina=b/sinb所以sina/sinb=cosb/cosa所以sinacosa=sinbcosb所以sin2a=sin2b所以2a=2b或者2a+2b=180°所以a=
将cosA=(b^2+c^2-a^2)/(2bc)cosB=(a^2+c^2-b^2)/(2ac),cosC=(a^2+b^2-c^2)/(2ab)代入得到:a[b*(a^2+c^2-b^2)/(2a
1.由已知得:sinAcosA=sinBcosB,即sin(2A)=sin(2B),可得答案2.用maple,因为a为锐角,arctan(2.0);a:=(%-Pi/4.0)*2;cos(a+Pi/3
应该是c(acosB-bcosA)=a^2-b^2由余弦定理左边=ac*(a^2+c^2-b^2)/2ac-bc(b^2+c^2-a^2)/2bc=(a^2+c^2-b^2)/2-(b^2+c^2-a
根据正弦定理得到:asinA=bsinB=csinC=2R,则a=2RsinA,b=2RsinB,c=2RsinC,代入acosA=bcosB=ccosC中得:2RsinAcosA=2RsinBcos
由正弦定理asinA=bsinB化简已知的等式得:sinAcosA=sinBcosB,∴12sin2A=12sin2B,∴sin2A=sin2B,又A和B都为三角形的内角,∴2A=2B或2A+2B=π