在△ABC中,求证:a=bcosC cosB
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:42:39
利用正弦定理a/sinA=b/sinB=c/sinC=2R(R为三角形ABC外接圆的半径)则sinA=2R/asinB=2R/bsinC=2R/c将这三个式子带入题目左边,就能得到0
根据二倍角公式cos2A=1-2sin^2A,cos2B=1-2sin^2B∴cos2A/a^2-cos2B/b^2=(1-2sin^2A)/a^2-(1-2sin^2B)/b^1=1/a^2-1/b
再问:谢啦兄弟
证明:根据余弦定理将cosB=a2+c2−b22ac,cosA=b2+c2−a22bc代入右边得右边c(a2+c2−b22abc-b2+c2−a22abc)=2a2−2b22ab=a2−b2ab=ab
sinA=BC/ABcosA=AC/ABSIN^2A+COS^2A=(BC^2+AC^2)/AB^2根据勾股定理,BC^2+AC^2=AB^2所以SIN^2A+COS^2A=1
由正弦定理:a/sinA=c/sinCa/c=sinA/sinC,两边同时乘以2cosB,左边分子分母同乘以c.得:2ac*cosB/c²=2sinAcosB/sinC.由余弦定理a
证明:由余弦定理cosB=(a^2+c^2-b^2)/2ac;cosA=(b^2+c^2-a^2)/2bc所以:c(cosB/b-cosA/a)=c{[(a^2+c^2-b^2)/2ac]/b-[(b
解:1.由余弦定理:cosA=(b^2+c^2-a^2)/2bccosB=(a^2+c^2-b^2)/2ac所以:(a^2-b^2-c^2)tanA+(a^2-b^2+c^2)tanB=-cosA*2
在△ABC中,由正弦定理可得a=2RsinA,b=2RsinB,c=2RsinC,∴a2+b2c2=4R2sin2A+4R2sin2B4R2sin2C=sin2A+sin2Bsin2C,故a2+b2c
(1)证明:过A作AH⊥BC于H,过C作CE∥AB交AD延长线于E,则∠E=∠BAD,∵AD平分∠BAC,∴∠CAD=∠BAD,∴∠E=∠CAD,∴AC=CE,∵CE∥AB,∴△ECD∽△ABD,∴B
(1)因为AB=AC有<B=<C又∠ABO=∠BCO则<B=<ABO+<OBC=∠BCO+<OBC=180-<BOC=180-130=50则<B=<
a=2bccosB有误,应为a=2bcosB证明:利用正弦定理a/sinA=b/sinBA=2B所以a/(2*sinB*cosB)=b/sinB得a=2bcosB
在AB上取一点D,使得角ACD=角A,则AD=CD故角CDB=2倍角A,由角B=2倍角A,故角CDB=角B,故CD=CB,故AD=BC,由AB=BC+BC,AB=AD+BD,故BD=BC,由CD=BC
S△ABC=1/2absinC=1/2a^2*(b/a)*sinC=1/2a^2*(sinB/sinA)*sinC=1/2a^2*sinB*sinC/sinA=1/2a^2*sinB*sinC/sin
证:[1-cos(2A)]/a²-[1-cos(2B)]/b²=2sin²A/a²-2sin²B/b²/1-cos(2A)=2sin
分析:本题主要注意两点:①公式cos2a=2cos²a-1的应用,该公式可引申为cosa=2cos²(a/2)-1②余弦定理公式的应用.证明:∵cosa=2cos²(a/
B(0,4),所以BO=4,∠BCO=30°,BC=8,由此得OC=4√3,点C在x轴的负半轴,所以C坐标为(-4√3,0)
sin(A-B)/sinC=(sinAcosB-COSAsinB)/sinC=(acosB-bcosA)/ccosB=(a²+c²-b²)/2accosA=(b²
S△ABC=(1/2)BC*AE=9.(AE⊥BC).S△BOC=(1/2)BC*OF(OF⊥BC).可见三角形ABC与OBC是是同底不等高的两个三角形.由相似三角形可证明OF=AE/3.∴S△OBC
由题意:1-sin^2A=cos^2Asin^2B+cos^2C+2sinAsinBcos(A+B)==sin^2B+cos^2C-2sinAsinBcosC=sin^2B+cosC(cosC-2si