在△abc中,∠acb=90°,当∠a的大小确定时它的正弦值是否会随之确定

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 02:11:15
在△abc中,∠acb=90°,当∠a的大小确定时它的正弦值是否会随之确定
如图:已知在△ABC 中,∠ACB=90°AC=BC,BD平分∠ABC 求证:AB=BC+CD.

你这张图……既然还有辅助点……过AB作BE=BC交AB于E,则BE=BC,BD=BD,∠ABD=∠DBC则全等∠DEB=∠BCD=∠DEA=90°CD=ED又∠A=∠A,∠DEA=∠ACB所以,△AB

如图,在△ABC中,已知∠ABC=∠ACB,BD,CE分别是∠ABC,∠ACB的平分线,请说明BD=CE

证明:在△ABD和△ACE中AB=AC且∠A是公共角∠ABD=∠ACD=1/2∠ABC=1/2∠ACB∴△ABD≌△ACE∴BD=CE

在△ABC中,∠ACB=90°,AC=AE,BC=BF,求∠ECF的度数

∠A+∠ACE*2=180∠B+∠BCF*2=180∠A+∠B=90∠A+∠ACE*2+∠B+∠BCF*2=360∠ACE*2+∠BCF*2=360-90=270∠ACE+∠BCF=135∠ECF=1

如图,在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,AD=1,求△ABC的周长与面积.

过D做DE⊥BC于EAD=DE=1(角平分线到2边的距离相等,你证全等也行)B=45°BE=DE=1BD=√2AB=√2+1AC=AB=√2+1BC=√2+2△ABC的周长=√2+1+√2+1+√2+

如图,在Rt△ABC中,∠ACB=90°,AC=BC,∠CAD=∠BAD,

证明:过点D作DE⊥AB于E,∵DE⊥AB,∴∠AED=90°,∴∠ACB=∠AED=90°,又∵∠CAD=∠BAD,AD=AD,∴△ACD≌△AED,∴CD=ED,AC=AE,∵∠ACB=90°,A

一道几何题,第二问,        24、在△ABC中,∠ACB=90

显然∠A=∠ABC=45°因为DC//AB,所以∠DCA=45°由于CE是角平分线,所以∠ACE=45°所以∠DCE为90°称DB和AC交点为F有△BCF和△DCE具有两个等角∠D=∠CBE(前已证)

如图,在RT△ABC中,∠ACB=90°.(1)a=5,c=13,

=12cd=60/13再问:我要过程。。再答:b=根号(c²-a²)=根号(13²-5²)=12sinA=a/c=CD/b所以5/13=CD/12CD=5/13

已知:如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,想一想,

设AD=X、CD=Y、BC=Z在Rt△ABC中,∠ACB=90°,CD⊥AB所以三角形ACD相似三角形CBD所以AD/CD=CD/BD所以CD平方=AD×BD即Y平方=9X(1)在三角形ACD和三角形

已知如图在RT△ABC中,∠ACB=90°,CA=CB

证明:∵∠ACB=90∴∠ACD=180-∠ACB=90∴∠ACB=∠ACD∵AC=BC,CD=CE∴△ACD≌△BCE(SAS)∴∠D=∠BEC又∵∠ACD=90∴∠DAC+∠D=90∵∠AEF=∠

如图,在Rt△ABC中,∠ACB=90°,D,E是AB上的点

是不是求<DCE如果是:(注,<表示角)<BEC=<ECB=<DCE+<DCB,<CDA=<ACD=<DCE+<ACE,<CDA=<B+<DCB,<BEC=<A+<ACE,<B+<DCB=<DCE+<

如图,在Rt△ABC中,∠ACB=90°,DE为中位线,∠CEF=∠A,

(1)DE为中位线→DE‖BF→∠AED=90°→DE为三角形ACD的高线——aE为中点→DE为三角形ACD的中线——b综合a,b→三角形ACD为等腰三角形,AD=CD→∠A=∠ACD∠CEF=∠A→

如图,已知:在Rt△ABC中,∠ACB=90°,M是AB边的中点,CH⊥AB于H,CD平分∠ACB.

Rt△ABC中,∠ACB=90°,M是AB边的中点所以AM=CM=BM∠CAB=∠ACM∠CAB=90-∠ABC∠BCH=90-∠ABC所以∠CAB=∠BCH所以∠BCH=∠ACM有CD平分,∠ACB

在△ABC中,∠ACB=90°

解题思路:利用圆的知识解题过程:同学你好,请把题目传上来最终答案:略

如图,在△ABC中,∠ACB=90°,点E为AB中点,连接C

解题思路:要证明四边形ACEF是平行四边形,需求证CE∥AF,由已知易得△BEC,△AEF是等腰三角形,则∠1=∠2,∠3=∠F,又∠2=∠3,∴∠1=∠F,∴CE∥AF解题过程:答案见附件最终答案:

在△ABC中.AC=BC,∠ACB=90°,D为AC中点.

证明:延长DF交AB于点G∠CDG=∠ACB=90DG‖BCDG为中位线DG=1/2BC=1/2AC(AB=AC)DC=1/2ACDG=DCDF=DEDG-DF=DC-DEFG=EC(1)∠CDG=9

在三角形ABC中 ∠ACB=90° CD⊥AB 垂足为D ∠

解题思路:(1)根据垂直的定义以及三角形的外角等于与它不相邻两个内角的和得出∠EBC=∠CDB+∠BCD从而得出答案,(2)根据三角形的外角等于与它不相邻两个内角的和得出∠A=∠EBC-∠ACB,从而

如图,在Rt△ABC中,∠ACB=90°,已知CD⊥AB,BC=1

(1)∵CD⊥AB,∴∠BDC=90°,∵∠DCB=30°,∴∠B=60°,在Rt△ACB中,∠ACB=90°,∴tan60°=ACBC=3,又BC=1,则AC=3;(2)在Rt△BDC中,tan∠B

急需立体几何帮助! 如图所示,在直三棱柱ABC-A1B1C1中,底面为直角三角形,∠ACB=90°

连A1B,沿BC1将△CBC1旋转与△A1BC1在同一个平面内,连A1C,则A1C的长度就是所求的最小值.通过计算可得ÐA1C1B=90°,又ÐBC1C=45°,\ÐA1

如图,已知在△ABC中,角ACB=90°,M为AB中点,DM⊥AB,CD平分∠ACB求证MD=AM

CD平分角ACB,角ACB=90度,则角ECB=45度M为AB中点,则AM=CM=BM,角MCB=角MBC则角MCE=角MCB-角ECB=角MBC-45度角DEM=角CEB=180-角ECB-角MBC

在RT△ABC中,∠ACB=90°,AC

因为角ACB=90度所以sinB=BC/ABS三角形ABC的面积=1/2AC*BC=1/2*BC*AB*sinB因为AC*BC=1/4AB^2所以1/4AB^2=BC*sinBsin*B*(BC/AB