在△ABC中,D为AC的中点,向量BC=3向量BE
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 19:09:55
证明:∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°.∵D是BC的中点,∴BD=CD.在△BDE与△CDF中,∵∠DEB=∠DFC ∠B=∠C
因为S△ABC=S=√[p(p-a)(p-b)(p-c)]=S=√15876=126注:公式里的p为:p=(a+b+c)/2海伦公式S△ABD=1/2*H*13=126/2(三解形中线分两个小三角形面
因为AB=AC,所以为等腰直角三角形所以AD=AB×sin45°=1
这里是一个纯代数的证明,抛砖引玉,希望有更加简单的证明,仅供参考再问:这个题目是初一学生的作业,怎么可能用这么复杂的方法来解答?请问你还有简单的方法吗!?再答:不好意思,不知道这个题目的背景,初中离得
连接oe,af两个相似的直角三角形立现,oc=3,oe=1,算出ec,问题就解决了
假设AC=BC=a;tan∠BDC=BC/CD=2;tan∠BDC=tan(∠A+∠ABD)=(tanA+tanABD)/(1-tanA*tanABD)=2tanA=1以上两式联合tanABD=1/3
你想学如何发图就找我吧,
1.腰AB﹥底边BC∵BD把△ABC分成两个三角形的周长差为5cm,BC=12㎝∴AB=12+5=17㎝△ABC的周长=17+17+12=46㎝2.腰AB﹤底边BC∵BD把△ABC分成两个三角形的周长
延长ED至使DF=DE易证三角形DBF和DAE全等所以角BFE=角AED=角C所以FB平行于CE又由于FE平行于BC则平行四边形FBCEFB=CE=AE
(1)证明:连CD,若AB⊥PC,则AB⊥CD,∵CD是线段AB的垂直平分线,∴AC=BC,这与AC≠BC矛盾.故AB与PC不垂直.(4分)(2)①由勾股定理,∠ACB是直角,D是斜边AB的中点,∴C
证明:延长DF交AB于点G∠CDG=∠ACB=90DG‖BCDG为中位线DG=1/2BC=1/2AC(AB=AC)DC=1/2ACDG=DCDF=DEDG-DF=DC-DEFG=EC(1)∠CDG=9
在ABC中,AB=AC,边BC的中点为D.作一个等边三角形DEF,使顶点E,F分别在边AB和AC上,(1),若∠BDE=∠CDF=60°时,EF与BC平行.理由:AB=AC,则∠B=C,又BD=DC,
连接AE和AG∵∠BAC=120°,AB=AC∴∠B=∠C=30°∵D是AB的中点,且DE⊥AB;F是AC的中点,且GF⊥AC∴DE是AB的中垂线,GF是AC的中垂线∴BE=AE,AG=CG∴∠B=∠
∵AC=BC、∠ACB=90°,∴∠B=45°.∵∠ACB=90°、AD=BD,∴CD=BD,∴∠BCD=∠B=45°,∴∠DCM=45°.∵AC=BC、AM=CN,∴CM=BN.由CM=BN、CD=
作DE⊥AB于点E设DE=1,则AE=1∴AD=√2∴AC=2√2∴AB=4∴BE=3∴BD=√10∴sin∠ABD=DE/BD=1/√10=√10/10
(1)延长DF交AB于M,因为D为AC中点,DM⊥AC.所以DM=DC.因为DE=DF,所以FM=CE.因为∠CEF=∠CDF+∠DFE,∠FMB=∠ADF+∠A.所以∠CEF=∠FMB.因为∠A+∠
是因为DE是△ABC的中位线所以DE=1/2AB又因为CE=1/2AC=1/2AB所以CE=DE所以,△DEC是等腰三角形
证明:延长AD到E使得DE=AD,在△ABD和△ECD中,BD=CD∠ADE=∠EDCAD=ED所以△ABD≌△ECD(SAS)所以AB=EC,∠BAD=∠E,因为AB>AC所以EC>AC所以在△AC
∵四边形ABDE是平行四边形,∴AE∥BD且AE=BD,又∵CD=BD,∴AE=CD,∴四边形AECD是平行四边形∵AB=AC,D是BC中点,∴AD⊥BC(等腰三角形三线合一)∴四边形ADCE是矩形.
∵D、E、F分别是AB、BC、AC的中点∴DE、EF、DF均为△ABC的中位线∴DE=1/2AC,EF=1/2AB,DF=1/2BC∴C△DEF=DE+EF+DF=1/2(AB+BC+AC)=15cm