在△ABC中,BD,CE是两条高,点P,Q分别是BC,ED的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:32:53
解题思路:本题运用直角三角形的性质和等腰三角形的性质解决。解题过程:解答见附件最终答案:略
证明:在△ABD和△ACE中AB=AC且∠A是公共角∠ABD=∠ACD=1/2∠ABC=1/2∠ACB∴△ABD≌△ACE∴BD=CE
证明:∵AB=AC∴∠ABC=∠ACB又∵CE、BD是高∴∠EBC=∠DCB在▲ABC中大括号∠EBC=∠DCB(已证) &nbs
考虑Rt△ABD与Rt△ACE由于∠BAD+∠CAE=∠BAD+∠ABD=90°,所以∠CAE=∠ABD,又AC=AB故Rt△ABD与Rt△ACE全等,则有BD=AE,CE=AD所以DE=AD-AE=
连接DE∵D、E分别为AC,AB的中点∴DE‖BC,DE=1/2BC∴S△ADE=1/4S△ABC=1/3S四边形BCDE∵BD⊥CE∴S四边形BCDE=1/2BD*CE=1/2*4*6=12∴S△A
如图,连接ED,则S四边形BCDE=12DB•EH+12BD•CH=12DB(EH+CH)=12BD•CE=12.又∵CE是△ABC中线,∴S△ACE=S△BCE,∵D为AC中点,∴S△ADE=S△E
1.180°-(80°/2)-(60°/2)=110°2.180°-(180°-40°)/2=110°3.180°-(180°-n°)/2=90°+n°/2
如图,连接DE,过E点作EF⊥BC,垂足为F,设DE=2x,依题意,得DE为△ABC的中位线,∴BC=4x,又∵四边形BCDE为等腰梯形,∴BF=12(BC-DE)=x,则FC=3x,∵BD⊥CE,∴
BC中点O为圆心BO为半径作圆,ED在圆上∵BD⊥AC,CE⊥AB,∴∠EBD=∠DCE,∠DEC=∠DBC,∠ADE=∠DEC+∠DCE=∠DBC+∠EBD=∠ABC,又∠A为公共角,∴△ADE∽△
∵∠A=80°,BD,CE分别平分∠ABC,∠ACB,∴∠BOC=180°-12(∠ABC+∠ACB)=180°-12(180°-80°)=130°.故选D.
证明:AB=AC:∠ABC=∠ACBBD⊥AC:∠BDC=90°CE⊥AB:∠CEB=90°=∠BDCBC是公共边所以:RT△BDC≌RT△CEB(角角边)所以:BD=CE
http://www.mofangge.com/html/qDetail/02/c2/201207/4s29c202196407.html望采纳再问:不是这个再答:抱歉啊http://www.lele
解题思路:相似三角形解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.p
证明:∵BD⊥AC,CE⊥AB∴∠BEC=∠BDC=90°∵BD=CE,BC=BC∴△BCD≌△CBE(HL)
连DE则DE平行于BC且等于BC的一半设BD与CE交于O则CO=4BO=2四边形BCDE面积=4*6/2=12三角形ADE面积是四边形BCDE的三分之一即4三角形ABC的面积=12+4=16
△AFG的形状为等腰直角三角形在△CEA中,∠ACE+∠CAE=90度;在△BDA中,∠ABD+∠BAD=90度,所以∠ACE=∠ABD又在△GCA与△ABF中,AC=BF,GC=AB,所以△GCA≌
(1)∠ABC=80°,BD为角平分线所以,∠IBC=40°∠ACB=60°,CE为角平分线所以,∠ICB=30°所以,∠IBC+∠ICB=70°△BIC中,∠BIC+∠IBC+∠ICB=180°所以
证明:△ABD和△ACE中∠ADB=∠AEC∠A=∠AAB=AC△ABD≌△ACE(AAS)BD=CE
证明:延长AM交BC于P,延长AN交BC于Q∵BD平分∠ABC∴∠ABD=∠CBD∵AN⊥BD,BN=BN∴△ABN全等于△QBN∴AN=QN∴AQ=2AN∴AN/AQ=1/2同理可证:AM/AP=1
因为BD⊥AC,CE⊥AB,所以,角BEO=角CDO=90度,又因为OE=OD,角BOE=角COD,所以,三角形BOE全等三角形COD,所以,角EBO=角DCO,OB=OC,所以,角OBC=角OCB,