在△ABC中,bd,ce是两条高,点p,q

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:36:23
在△ABC中,bd,ce是两条高,点p,q
在锐角△ABC中,BD、CE分别是AC、AB的高

解题思路:本题运用直角三角形的性质和等腰三角形的性质解决。解题过程:解答见附件最终答案:略

如图,在△ABC中,已知∠ABC=∠ACB,BD,CE分别是∠ABC,∠ACB的平分线,请说明BD=CE

证明:在△ABD和△ACE中AB=AC且∠A是公共角∠ABD=∠ACD=1/2∠ABC=1/2∠ACB∴△ABD≌△ACE∴BD=CE

如图,在△ABC中,AB=AC,CE,BD是高,试证明CE=BD.(说明等腰三角形的两个底角相等,本

证明:∵AB=AC∴∠ABC=∠ACB又∵CE、BD是高∴∠EBC=∠DCB在▲ABC中大括号∠EBC=∠DCB(已证)      &nbs

初二数学题解已知:在△ABC中,∠BAC=90°,BD⊥AN于D.CE⊥AN于E.求证:DE=BD-CE.

考虑Rt△ABD与Rt△ACE由于∠BAD+∠CAE=∠BAD+∠ABD=90°,所以∠CAE=∠ABD,又AC=AB故Rt△ABD与Rt△ACE全等,则有BD=AE,CE=AD所以DE=AD-AE=

如图,在△ABC中,已知BD和CE分别是两边上的中线,且BD⊥CE,BD=4,CE=6,那么△ABC的面积等于多少?

连接DE∵D、E分别为AC,AB的中点∴DE‖BC,DE=1/2BC∴S△ADE=1/4S△ABC=1/3S四边形BCDE∵BD⊥CE∴S四边形BCDE=1/2BD*CE=1/2*4*6=12∴S△A

在△ABC中,已知BD和CE分别是两边上的中线,并且BD⊥CE,BD=4,CE=6,那么△ABC的面积等于(  )

如图,连接ED,则S四边形BCDE=12DB•EH+12BD•CH=12DB(EH+CH)=12BD•CE=12.又∵CE是△ABC中线,∴S△ACE=S△BCE,∵D为AC中点,∴S△ADE=S△E

在三角形ABC中,BD、CE分别平分∠ABC和∠ACB,BD和CE∠于点I.

1.180°-(80°/2)-(60°/2)=110°2.180°-(180°-40°)/2=110°3.180°-(180°-n°)/2=90°+n°/2

如图,在△ABC中,AB=AC,BD、CE分别为两腰上的中线,且BD⊥CE,则tan∠ABC=______.

如图,连接DE,过E点作EF⊥BC,垂足为F,设DE=2x,依题意,得DE为△ABC的中位线,∴BC=4x,又∵四边形BCDE为等腰梯形,∴BF=12(BC-DE)=x,则FC=3x,∵BD⊥CE,∴

如图,在△ABC中,BD,CE分别是AC,AB上的高,BD,CE相交于点F,△ABC与△ADE相似吗?

BC中点O为圆心BO为半径作圆,ED在圆上∵BD⊥AC,CE⊥AB,∴∠EBD=∠DCE,∠DEC=∠DBC,∠ADE=∠DEC+∠DCE=∠DBC+∠EBD=∠ABC,又∠A为公共角,∴△ADE∽△

在△ABC中,∠A=80°,BD,CE分别平分∠ABC,∠ACB,BD,CE相交于点O,则∠BOC等于(  )

∵∠A=80°,BD,CE分别平分∠ABC,∠ACB,∴∠BOC=180°-12(∠ABC+∠ACB)=180°-12(180°-80°)=130°.故选D.

如图,在△ABC中,AB=AC,BD⊥AC,CE⊥AB,垂足分别为点D、E.求证:BD=CE

证明:AB=AC:∠ABC=∠ACBBD⊥AC:∠BDC=90°CE⊥AB:∠CEB=90°=∠BDCBC是公共边所以:RT△BDC≌RT△CEB(角角边)所以:BD=CE

已知:如图在△ABC中,∠BAC=90°,AB=AC,BD平分∠ABC,CE⊥BD交BD的延长线于E.求证BD=2CE.

http://www.mofangge.com/html/qDetail/02/c2/201207/4s29c202196407.html望采纳再问:不是这个再答:抱歉啊http://www.lele

如图,在△ABC中,BD⊥AC于点D,CE⊥AB于点E,BD

解题思路:相似三角形解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.p

如图,在△ABC 中,BD⊥AC于D,CE⊥AB于E,BD=CE,求证△BCD≌△CBE.

证明:∵BD⊥AC,CE⊥AB∴∠BEC=∠BDC=90°∵BD=CE,BC=BC∴△BCD≌△CBE(HL)

在三角形ABC中,BD,CE是两条中线,BD=4,CE=6,且BD垂直CE,则三角形面积是多少?

连DE则DE平行于BC且等于BC的一半设BD与CE交于O则CO=4BO=2四边形BCDE面积=4*6/2=12三角形ADE面积是四边形BCDE的三分之一即4三角形ABC的面积=12+4=16

已知在△ABC中,BD和CE为两条高线,F为BD上一点,G为CE延长线上一点,BF=AC,CG=AB.

△AFG的形状为等腰直角三角形在△CEA中,∠ACE+∠CAE=90度;在△BDA中,∠ABD+∠BAD=90度,所以∠ACE=∠ABD又在△GCA与△ABF中,AC=BF,GC=AB,所以△GCA≌

如图,在三角形ABC中 BD,CE平分角ABC和角ACB,BD,CE交与点I

(1)∠ABC=80°,BD为角平分线所以,∠IBC=40°∠ACB=60°,CE为角平分线所以,∠ICB=30°所以,∠IBC+∠ICB=70°△BIC中,∠BIC+∠IBC+∠ICB=180°所以

已知:如图,在△ABC中,AB=AC,BD、CE是高 求证:BD=CE

证明:△ABD和△ACE中∠ADB=∠AEC∠A=∠AAB=AC△ABD≌△ACE(AAS)BD=CE

如图,在△ABC中,BD,CE是角平分线,AM⊥CE,AN⊥BD,M、N分别是垂足.求证:MN∥BC

证明:延长AM交BC于P,延长AN交BC于Q∵BD平分∠ABC∴∠ABD=∠CBD∵AN⊥BD,BN=BN∴△ABN全等于△QBN∴AN=QN∴AQ=2AN∴AN/AQ=1/2同理可证:AM/AP=1

在△ABC中,BD⊥AC,CE⊥AB,CE、BD相交于点O,OE=OD,求证:AB=AC

因为BD⊥AC,CE⊥AB,所以,角BEO=角CDO=90度,又因为OE=OD,角BOE=角COD,所以,三角形BOE全等三角形COD,所以,角EBO=角DCO,OB=OC,所以,角OBC=角OCB,