在△ABC中,abc分别是角A角B角C所对应的边,∠C=90,则a b c
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 14:02:10
然后呢.再问:题被吞了?!1.sin²B+C/2+cos²2A2.若b=2,ABC的面积S=3,求a再问:1.求sin²B+C/2+cos2A2.若b=2,三角形ABC的
答:三角形ABC中:cosA=1/3A+B+C=180°所以:sin(B+C)=sinA=√(1-cos²A)=√[1-(1/3)²]=2√2/3所以:sin(B+C)=2√2/3
a/cosB=b/cosAa/b=cosB/cosA由正弦定理a/sinA=b/sinB所以a/b=sinA/sinB所以cosB/cosA=sinA/sinBsinAcosA=sinBcosB2si
根据正弦定理,化简成(a+b+c)(a+b-c)=3ab(a+b)^2-c^2=3aba^2+b^2-c^2=ab(a^2+b^2-c^2)/2ab=1/2因为cosC=(a^2+b^2-c^2)/2
1)y=√3x-1,BC所在直线的方程为y=1tan∠ABC=√3,∠ABC=60°所以:外接圆半径Rb=2RsinBR=AC/(2sin60)=√62)a与c的等差中项为3假设a>ca=6-cb^2
一般三角形的射影定理:c=acosB+bcosAb=acosC+ccosAa=bcosC+ccosB所以,acosB+bcosA=cps:简略证明如下:三角形中,sin(A+B)=sinC展开得:si
1.正弦定理S=absinC/2余弦定理c^2=a^2+b^2-2abcosC代入2S=(a+b)^2-c^2得absinC=2ab+2abcosCsinC=2+2cosC因为(sinC)^2+(co
证明:∵acos2C2+ccos2A2=3b2,∴sinA1+cosC2+sinC1+cosA2=3sinB2,即:sinA+sinAcosC+sinC+sinCcosA=3sinB,∴sinA+si
由余弦定理易知A角为60或120度.先展开然后将式子写成a等于什么形式,对照余弦定理即得解.
已知,在△ABC中,abc分别是角ABC的对边且(a+b+c)(a+b-c)=3ab所以,(a+b+c)(a+b-c)=(a+b)²-c²=a²+b²-c
明白了,是偶看错了刚才.A=2π/3因为b-c=2acos(π/3+C)所以sinB-sinC=2sinA(1/2cosC-√3/2sinC)所以sinB-sinC=sinAcosC-√3sinAsi
(2b-c)cosA-acosC=0由正弦定理得2sinBcosA-sinCcosA-sinAcosC=0∴2sinBcosA-sin(A+C)=0,2sinBcosA-sinB=0,∵A、B∈(0,
你的题不全啊怎么回答啊
C903B>90B>30A>60A
∵acosB=bcosA,∴由正弦定理可得sinAcosB=sinBcosA∴sinAcosA=sinBcosB∴sin2A=sin2B∴2A=2B或2A+2B=π∴A=B或A+B=π2∴△ABC的形
因为a+c=2b由正弦定理可以知道sinA+sinC=2sinB①由积化和差公式知sinA+sinC=2*sin[(A+C)/2]*cos[(A-C)/2]因为A+B+C=180°,A-C=60°所以
sin²A-sin²(180-A-B)=sinAsinB-sin²Bsin²A-sin²(A+B)=sinAsinB-sin²Bsin&su
因为:cosB/cosC=-b/2a+c=-sinB/(2sinA+sinC)所以:2cosBsinA+cosBsinC=-sinBcosC就有:2cosBsinA+cosBsinC+sinBcosC