在△ABC中,a,b,c的分别为A,B,C的对边,且b²=ac.则B的取值范围是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:11:02
在△ABC中,a,b,c的分别为A,B,C的对边,且b²=ac.则B的取值范围是
在△ABC中,角A,B,C所对应的边分别为a,b,c,a=23

由tanA+B2+tanC2=4得cotC2+tanC2=4∴cosC2sinC2+sinC2cosC2=4∴1sinC2cosC2=4∴sinC=12,又C∈(0,π)∴C=π6,或C=5π6由2s

在△ABC中,角A、B、C的对边分别为a、b、c,其中c=2,C=π3,若△ABC

由余弦定理及已知条件可得a2+b2-ab=4.又∵△ABC的面积等于3.∴12absinC=3,得ab=4.联立方程组a2+b2−ab=4ab=4,解得a=2,b=2.

在锐角三角形ABC中,角A,B,C的对边分别是a,b,c,

1)y=√3x-1,BC所在直线的方程为y=1tan∠ABC=√3,∠ABC=60°所以:外接圆半径Rb=2RsinBR=AC/(2sin60)=√62)a与c的等差中项为3假设a>ca=6-cb^2

在△ABC中,角A,B,C的对边分别是a,b,c那么acosB+bcosA等于

一般三角形的射影定理:c=acosB+bcosAb=acosC+ccosAa=bcosC+ccosB所以,acosB+bcosA=cps:简略证明如下:三角形中,sin(A+B)=sinC展开得:si

在△ABC中,a,b,c分别是角A,B,C所对的边,若acos2C2

证明:∵acos2C2+ccos2A2=3b2,∴sinA1+cosC2+sinC1+cosA2=3sinB2,即:sinA+sinAcosC+sinC+sinCcosA=3sinB,∴sinA+si

在△ABC中,角A、B、C所对的边分别为a、b、c.若b−c=2acos(π3+C)

由正弦定理asinA=bsinB=csinC=2R,得:sinB-sinC=2sinA•cos(60°+C),…(2 分)∵A+B+C=π,故有:sin(A+C)−sinC=sinAcosC

在△ABC中,内角A,B,C的对边分别是a,b,c已知B=C,2b=根号3a

1.根据正弦定理:b/sinB=c/sinC∵B=C∴b=c∵2b=√3a∴a=2b/√3余弦定理:cosA=(b^2+c^2-a^2)/2bc=[b^2+b^2-(2b/√3)^2]/2b*b=1/

在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2a+c)sinB+(2c+b)sinC.

题目写错了,条件应该是:2asinA=(2b+c)sinB+(2c+b)sinC解答如下:(1)由正弦定理得:2a²=(2b+c)b+(2c+b)c,化简得a²=b²+c

在△ABC中,角A、B、C所对的边长分别为a、b、c,

有正弦定理可得a/sinA=b/sinB=2R(R为三角形外接圆半径)所以等式两边同除以2R得sin²AsinB+sinBcos²A=sinA·根下2所以sinB(sin²

在△ABC中,角A、B、C所对的边分别为a、b、c,若1+tanAtanB

由1+tanAtanB=2cb可得1+sinAcosBcosAsinB=2cb由正弦定理可得,1+sinAcosBcosAsinB=2sinCsinB,整理可得,sinAcosB+sinBcosAsi

在△ABC中,角A、B、C的对边分别为a、b、c,tanC=37.

(Ⅰ)∵tanC=37,∴sinCcosC=37.又∵sin2C+cos2C=1,解得cosC=±18.∵tanC>0,∴C是锐角.∴cosC=18.(Ⅱ)∵CB•CA=52,∴abcosC=52.解

在△ABC中,角A,B,C的对边分别为a,b,c,向量m=(a,b),n=(b,c)

(1)∵A+B+C=π∴A+C=π-B1∵A-C=π/321式+2式得2A=4π/3-BA=2π/3-B/21式-2式得2C=2π/3-BC=π/3-B/2(2)m.n=ab+bc=2b^2=b(a+

在△ABC中,∠A,B,C的对边分别为a,b,c,且2ccos2(A2

∵2ccos2(A2)=b+c,∴12(1+cosA)=b+c2c∴cosA=bc,∴a2=b2+c2-2bccosA=b2+c2-2bc•bc=c2-b2,∴a2+b2=c2,∴△ABC是直角三角形

在△ABC中,abc分别是角ABC的对边且(a+b+c)(a+b-c)=3ab则cos(A+B)

已知,在△ABC中,abc分别是角ABC的对边且(a+b+c)(a+b-c)=3ab所以,(a+b+c)(a+b-c)=(a+b)²-c²=a²+b²-c

在△ABC中,角A、B、C的对边分别为a、b、c.

a=2√2c,b=3c,所以2ab=12√2c^2.

在锐角△ABC中,角A、B、C的对边分别为a、b、c,若ab

∵ab+ba=6cosC,由余弦定理可得,a2+b2ab=6•a2+b2−c22ab∴a2+b2=3c22则tanCtanA+tanCtanB=cosAsinCcosCsinA+cosBsinCcos

在△ABC中,a、b、c分别为A、B、C的对边,cos

∵cos2A2=b+c2c,∴1+cosA2=b+c2c,∴c(1+b2+c2−a22bc)=b+c,化为b2+a2=c2.∴C=90°.∴△ABC的形状为直角三角形.

在△ABC中,角A、B、C的对边分别为a、b、c,求证:acos2C2

证明:∵acos2C2+ccos2A2=a•1+cosC2+c•1+cosA2=a+c2+12(a•a2+b2−c22ab+c•b2+c2−a22bc)=12(a+b+c),∴acos2C2+ccos