在spss的回归中f值是
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:57:00
常量sig值高于0.05这个回归仍然有效,这仅仅表明线性回归的截距项可以被设定为0,也就是经过原点.但是,如果你将截距项设为0,则该方程的拟合优度指标值(R的平方)将是不准确的,即使你重新拟合.再问:
k为自变量个数,n为样本含量n-k-1为自由度比如总共有10个人.则n=10每个人检测自变量x有:血压、体重、腹围.则k=3因变量y为:是否患有某病.需要做血压、体重、腹围和是否患有某病之间的回归关系
不可能有图的两个变量可以在二维空间即平面上作出图形三个变量可以在三维空间作出图形(空间解析几何)四维及以上的就根本不可能做出来了!三维的可用MATLAB再问:比如用spss软件已经做出二元线性回归方程
多元线性模型即可再问:为啥呢?有什么依据说明他们就是线性相关吗?再答:你用逐步回归剔除不显著的自变量,保留显著的,不就行了吗SPSS里面固有的模型很多的,一般情况下高次的不要用,因为误差大
要大于等于三个水平的分类变量才有必要生成哑变量的,只有两个水平的话不用.logi回归的因变量就是只能俩水平:0和1的.我一般生成哑变量是直接conpute的.简单说分类指的是一个变量在测量中的属性,就
F值和T值多少没有绝对的标准的.主要是看你的回归模型是否合理.在进行回归分析之后还要进行残差分析,看模型是否存在异方差,自相关,多重共线性等问题.若是存在异方差、自相关等问题,有可能会高估t值,F检验
没有这么麻烦,很容易的:在Logistic回归主界面中同时选择月收入与受教育程度这两个变量(按住Ctrl键不放,用鼠标分别点击月收入与受教育程度),然后点击>a*b>键就可以了.再问:你好,此外,我还
F检验说明你的众多自变量和你的因变形是有显著性影响的,可以做回归分析.但是并不是说每一个自变量都和因变量有显著性影响,所以要对每一个自变量T检验,T检验不合格说明该自变量对因变量没有显著性影响,一般做
对!SPSS回归分析中AdjR方指的是调整R方
你说的是哪个p值呢,ANOVA里的p值要小于0.05,才说明方程有效.后面的系数,B值对应的P小于0.05说明该系数比较有效.
当然有意义.F值对应的SIG>0.05,则表示回归方程是无效的.
这两个图都可以用来判断变量是否符合正态分布从第一个图上来看大致上符合正太分布,下面的pp图也可以证明是属于正态分布就这么一个意思
在做logistci回归的时候,软件分析的结果就会显示OR值和95%置信区间,OR值就是Exp
是一个标记,告诉你它代表了你的模型里的常数项和自变量的含义,表格下面写了的
回归方程:时间=173.817-10.802*中青年的浓度+8.268*老年组的浓度从调整的R方=0.878看,因变量的变化有87.8%可由自变量来解释,拟合优度很好,从方差分析表看,F=83.960
改数据就行啊再问:往哪个方向改啊再答:不显著的方向
你再用SPSS做回归时,在选择因变量与自变量的那个窗口的右边,有“选项”这个按钮,点进去有选择是0.05还是其他数值,默认的应该是0.05
F值不知道呢P可以这样描述:矫正模型显著性为XXX,即该模型是显著/不显著的.从因素的显著性水平为XXX,表示拒绝/不拒绝原假设,即α1,α2,α3……中至少有一个不等于0/不拒绝α1,α2,α3……
做个回归就可以啦非常简单再问:是不是先求对数在用线性回归?本人对spss很陌生,若知道可不可以给个大体步骤?再答:直接回归就可以啦