在rt三角形abc中,分别以点a和点b为圆心,大于二分之一ab长为半径画弧

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 06:00:33
在rt三角形abc中,分别以点a和点b为圆心,大于二分之一ab长为半径画弧
在RT三角形ABC中,角C等于90度,AC等于3,BC等于4,以点C为圆心,CA为半径的圆与AB,BC分别相交于D,E,

连接CD,作CF垂直于AB于F因为角C等于90度,AC等于3,BC等于4,所以AB=5因为S△ABC=AC*BC/2=AB*CF/2所以CF=AC*BC/AB=12/5因为CD=CA=3(都是半径),

在Rt三角形ABC中,求CD

 再问:好像不对再答:嗯再答:过程没错,答案错了,是7╱8再问:可是没有这个选项再答:选择题?再答:把题目全拍过来,快点再问: 再问: 再答:难怪!角c多少度?再问:90

已知Rt三角形ABC中,角c=90度,点o在AB上,以o为圆心OA为半径的圆与AC、AB分别交于点D、E,且角A=角CB

1.在圆O中因为AE是圆O的直径,得到三角形ADE是直角三角形,即AD⊥DE由AC⊥CB得DE∥CB,从而∠DBC=∠EDB,由条件∠A=∠DBC=∠EDB得,在圆O中∠A=∠EDB,从而DB为圆O的

已知Rt三角形ABC中,角c=90度,点o在AB上,以o为圆心OA为半径的圆与AC、AB分别交于点D、E,且bc平方

连接DE,因为AE为圆O的直径,所以角ADE=90°,即DE⊥AC.因为角C=90°,所以BC⊥AC所以BC∥DE,角DBC=角BDE又因为BC²=CD*CA,角C为公用角,所以RT△DCB

在RT三角形ABC中,角C=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB、BC分别交于点D、求AD

依题意可知角ADC为直角,所以三角形ADC与三角形ACB相似AD:AC=AC:AB,AD:3=3:5,AD=9/5

在如图Rt三角形ABC中,角C=90,AC=3,将其B点顺时针旋转一周,则分别以BA,BC为半径形成一圆环,则圆环面积为

Rt三角形ABC中,角C=90度,AC=3由勾股定理得BA^2-BC^2=AC^2所以,将其以B点为中心,顺时针旋转一周,分别以BA,BC为半径形成一圆环,圆环面积为:πBA^2-πBC^2=π(BA

在RT三角形ABC中,角ACB=90度,AC=4,BC=2,以AB上的一点O为圆心作圆,分别与AC、BC相切于点D、E,

(根据相切的性质与相似三角形求解)∵圆O与AC、BC相切于点D、E∴OD、OE⊥AC、BC∴OD‖BC∴△ADO∽△ACB设:圆O的半径为x∵AD/AC=DO/BC∴有:(4-x)/4=x/2解得:x

如图所示,在Rt△ABC中,∠ACB=90度,CD⊥AB于点D,分别以AC,BC为边向三角形外作等边△ACE和△BCF,

因为∠ACB=90°,CD平分∠ACB,所以∠FCD=45°,又因为DE⊥BC,即三角形FCD由题可以知道,角ACB=角CED=角CFD=90度.所以四边形CEDF四个角均为直角.

如图,在Rt△ABC中,△ACB=90 ,CD⊥AB于点D,分别以AC、BC为边向三角形外作等边三角形△ACE和等边△B

证:连接DE,CF.由题设得:△ADC~△BDC.(Rt△,A.A.A)∴AD:CD=AC:BC=AC:BC=AE:CF.∴AD:AE=CD:CF.又,∠BCD=∠DAC(与同一角互余的角相等)∠BD

如图,三角形ABC中,AG垂直BC于点G,以A为直角顶点,分别以AB、AC为直角边,向三角形ABC外作等腰Rt三角形

据题意知,∠EAB=90度,∠PAE+∠BAG=90度,∠PAE+∠PEA=90度,所以∠BAG=∠PEA∠PAE=∠ABG,又EA=BA,故△BAG≌△AEP,得PE=AG,同理QF=AG,所以PE

在RT三角形ABC中.∠C=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB和 BC分别交与点D 和E,求

如图,过C点作CF垂直AB.因为 ∠C=90°,AC=3,BC=4所以 AB=5 (勾股定理)由三角形ABC的面积 1/2 x 3 

在RT三角形ABC中

已知,CM是Rt△ABC斜边上的中线,(题中应该是∠A小于∠B)可得:CM=AM,所以,∠ACM=∠BAC.∠BCD=90°-∠B=∠BAC=∠ACM=∠DCM.因为,∠BCD+∠ACM+∠DCM=9

在RT三角形ABC中,角ABC=90度,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交于点D,E且BD=B

(2)连接DE,则角ADE=90度,角OED=角ODE=90度-角BAC,BD=BC,角BDC=角BCA=90度-角BAC,所以角OED=角ODE=角BDC=角BCA,故角EOD=角DBC,△EOD∽

在Rt三角形ABC中,M是斜边BC的中点,P、Q分别是AB、AC边上的点,求证:三角形MPQ的周长大于BC

延长BA到B',使得AB=AB'延长CA到C',使得AC=AC'连接B'C,B'C'.在B'C'上取中点M',在AB'上取P'使得AP=AP'连接AM',M'P',P'Q可以知道PQ=P'Q,PM=P

在RT三角形ABC中,

a+b=4ab=2a^2+b^2=(a+b)^2-2ab=12=斜边的平方RT三角形ABC的外接圆的半径就是斜边的一半所以为根号3

如图,在Rt三角形abc中,角c等于90度,点o在ab上,以o为圆心,oa长为半径的园与ac,ab分别交于d.e,且角c

连接OD、DE有AD⊥DEDE‖BC且有角OAD=ODA已知角OAD=CBD则有OAD=ODA=CBD=EDB而角ODE=OED且OAD+OED=90度因此有ODE+EDB=90度OD垂直BDBD为圆

在三角形ABC中,角C=RT角,AC=4CM,BC=5CM,点D在BC上,且以CD=3CM,现有两个动点P,Q分别从点A

∵PE//BC∴PE⊥AC又∵△APE∽△ACDAP=XCD=3AC=4∴AP/AC=PE/CD∴PE=AP*CD/AC=3X/4在RT△APE中:AE=√(AP^2+PE^2)=5/4X因为:AD=

在Rt三角形ABC中,M是斜边BC的中点,P、Q分别是AB、AC,边上的点,求证:三角形MPQ的周长大于BC

提示一下:取PQ中点NAM、AN、MN.先证明MP+MQ>2MN有PQ=AN+AN还有MN+AN≥AM.

已知,在RT三角形ABC中,角C等于RT角,点D,E,F分别是AB,BC,CA边上的中点

∵D、E是AB,BC的中点∴DE//FC∵D,F是AB,AC的中点∴DF‖EC所以四边形CEDF是平行四边形又∵角C是直角∴四边形CEDF是矩形