圆绕y轴体积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 21:31:04
画个大概的图吧
S=∫(0,1)[x(1/2)]dx-∫(0,1)[x^2]dx=[2/3(x^(3/2))-1/3(x^3)](0,1)=2/3-1/3=1/3V=π∫(0,1)[x]dx-π∫(0,1)[x^4]
y=x²=9-x²,2x²=9,x=±3/√2二者交于A(3/√2,9/2),B(-3/√2,9/2)绕y轴旋转,用y做自变量较方便y=x²,x=√yy=9-x
先求交点为(1,2)和(1,-2)该图形关于x轴对称,体积V=2π∫(0,2)[(5-y^2)^2-1]dy=832π/15
圆柱壳法再问:������ϸ˵һ��ô��лл再答:����Բ��һ���İ�����再问:����ˣ�лл
其实每一个截面是一个环形,这个环形的大圆半径是π-arcsiny,小圆半径是arcsiny环形面积是π(π²-2πarcsiny)积分得到V=∫0~1[π(π²-2πarcsiny
答:x=5±√(16-y^2)且关于x轴对称,所以V=2π∫0到4[(5+√(16-y^2))^2-(5-√(16-y^2))^2]dy=2π∫0到420√(16-y^2)dy=40π∫0到4√(16
clcclearx=0:pi/2000:pi/2;forii=1:1001y(ii)=sin(x(ii))*cos(x(ii));endplot(x,y)再问:不是怎么画图形,是求它旋转后的体积是多少
由y=sinx得:x1=arcsiny,x1∈(0,π/2),y∈(0,1)x2=π-arcsiny,x2∈(π/2,π),y∈(0,1)∴V=∫(0,1)π[(x2)²-(x1)²
非常可惜,一楼积分积错了.请参见图片,点击放大.如不清楚,可以放大荧屏,或将点击放大后的图片临时copy下来,会非常清晰:
y=根号x与直线x=1,x=4,y=0围成的平面图形绕Y轴旋转所得旋转的体积:2π∫xydx=2π∫x^3/2dx=4π/5∫dx^5/2积分上限是4,下限是2所以体积是124π/5
直接用球体积公式就可以了!4/3pi!再问:怎么会是球呢我没搞懂他是怎么转的能画个图吗?再答:原来的曲线是个上半圆,绕着其直径转一圈啦!
解法一:所求体积=2∫2πx√[16-(x-5)²]dx=4π∫x√[16-(x-5)²]dx=4π∫(4sint+5)*4cost*4costdt(令x=4sint+5)=64π
首先必须指出:他们若不加限制,则答案为“无限大”.题目应该写明【四分之一周期】的图像旋转生成的立体图形的体积.就是图中任一个色块构成的旋转体体积.有常用的体积公式.我写了思路,你自己是否可以解决啦?&
既然你只要结果,就用AutoCAD给你查一查,建立模型,massprop命令即可AutoCAD一时半会儿交不会,下面是结果,绝对正确,计算机算的可惜不能用pi表示,更高级的数学软件可以,如matlab
体积V=积分1到2[(2x-x^2)*2pixdx]+积分2到3[(x^2-2x)*2pixdx]=11/6pi+9/2pi=38/6pipi就是圆周率,3.14
取旋转体的与x轴垂直的圆形薄圆盘,其厚度为dx,则薄圆盘的体积为pi*(y^2)dx,即为pi*(sinx)^2*dx,对其取0到pi的定积分即为旋转体体积.结果为((pi)^2)/2
答:用积分求:V=π∫0到ln2(e^y)^2dy=π∫0到ln2e^(2y)dy=πe^(2n)/2|0到ln2=2π-π/2=3π/2