抛物线x²=4y,M为直线L∶y=-1上任意一点,过点M做抛物线的两条切线MA,MB,且A,B
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 20:07:34
抛物线x²=4y,M为直线L∶y=-1上任意一点,过点M做抛物线的两条切线MA,MB,且A,B
①当M的坐标为(0,-1)是求过M,A,B三点的圆的方程.
②证明以AB为直径的圆恒过点M.
还有我看到一个类似的题目当中一个式子我不懂,请大侠告诉下为什么有这个式子,题目如下.
过点M(a,-1)作抛物线X^2=4Y的两条切线MA,MB,且A,B为两切点,求证直线AB过定点
过点M(a,-1)作抛物线X^2=4Y的两条切线MA,MB,且A,B为两切点,
1)求证直线AB过定点,并求出定点坐标
(1)证:设切点A坐标为(x1,x2),B(x2,y2)
对抛物线方程y=x²/4求导得:y'=x/2
所以AB两点满足[y-(-1)]/(x-a)=x/2,与y=x²/4联立消去y得:
0+4)^(3/2)/2=4
AB为什么满足[y-(-1)]/(x-a)=x/2, 这个怎么得到的,请大侠指教.
①当M的坐标为(0,-1)是求过M,A,B三点的圆的方程.
②证明以AB为直径的圆恒过点M.
还有我看到一个类似的题目当中一个式子我不懂,请大侠告诉下为什么有这个式子,题目如下.
过点M(a,-1)作抛物线X^2=4Y的两条切线MA,MB,且A,B为两切点,求证直线AB过定点
过点M(a,-1)作抛物线X^2=4Y的两条切线MA,MB,且A,B为两切点,
1)求证直线AB过定点,并求出定点坐标
(1)证:设切点A坐标为(x1,x2),B(x2,y2)
对抛物线方程y=x²/4求导得:y'=x/2
所以AB两点满足[y-(-1)]/(x-a)=x/2,与y=x²/4联立消去y得:
0+4)^(3/2)/2=4
AB为什么满足[y-(-1)]/(x-a)=x/2, 这个怎么得到的,请大侠指教.
y'=(x/2)就表示切线斜率,则这两条切线分别是:
L1:y=k1(x-a)-1;
L2:y=k2(x-a)-1
其中,k1=(x1/2)、k2=(x2/2)
又切线过点(x1,y1)、(x2,y2)
则:
y1=k1(x1-a)-1、y2=k2(x2-a)-1
上面这两个方程就表示:点A(x1,y1)、B(x2,y2)在直线:y=(x/2)(x-a)-1上..
所以这个方程【y=(x/2)(x-a)-1】就表示过A、B两点的曲线方程.
L1:y=k1(x-a)-1;
L2:y=k2(x-a)-1
其中,k1=(x1/2)、k2=(x2/2)
又切线过点(x1,y1)、(x2,y2)
则:
y1=k1(x1-a)-1、y2=k2(x2-a)-1
上面这两个方程就表示:点A(x1,y1)、B(x2,y2)在直线:y=(x/2)(x-a)-1上..
所以这个方程【y=(x/2)(x-a)-1】就表示过A、B两点的曲线方程.
抛物线x²=4y,M为直线L∶y=-1上任意一点,过点M做抛物线的两条切线MA,MB,且A,B
已知抛物线C:x^2=4y,M为直线:y=-1上任意一点,过点M做抛物线的两条切线MA,MB,
(2012•东城区二模)已知抛物线C:x2=4y,M为直线l:y=-1上任意一点,过点M作抛物线C的两条切线MA,MB,
一道圆锥曲线难题抛物线C的方程为X^2=4y,M为直线l:y=-m(m>0)上任意一点,过点M作抛物线C的两条切线MA,
设抛物线C的方程为x2=4y,M(x0,y0)为直线l:y=-m(m>0)上任意一点,过点M作抛物线C的两条切线MA,M
一道圆锥曲线的题已知抛物线C:y=(1/4)x^2的准线为l,过l上任意一点M做抛物线C的两条切线l1,l2,切点分别为
已知直线l通过抛物线x平方=4y的焦点F,且与抛物线交于A、B两点,分别过A、B两点的抛物线的两条切线相交于点M,则角A
点M(2,1)在抛物线y=ax^2+2上,直线l交抛物线于A,B两点,且直线MA,MB的倾斜角互补,则直线l的斜率为
设抛物线方程为x^2=zpy(p>0),M为直线y=-2p上任意一点,过M引抛物线的切线,切点分别为A,B.是否存在点M
已知抛物线Cx^2=4y,直线l:x-y-2=0设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切
过抛物线C:x方=4y的焦点做斜率为一的直线交C于A,B两点,M是x轴上的动点,则向量MA乘以向量MB的最小值为
抛物线切线方程已知抛物线方程为y^2=2px,抛物线上一点M(a,b),求过M点的抛物线的切线方程~