圆柱圆锥推导体积公式过程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 05:52:38
设圆锥底面半径r,高h:则底面=2πr母线长=√(h^2+r^2)侧面展开为弧长L=2πr,半径R=√(h^2+r^2)的扇形展开扇形的圆心角θ=L/R=2πr/√(h^2+r^2)弧度侧面积=1/2
长方形面积:长×宽长方体体积:长×宽×高正方形面积:边长×边长正方体体积:边长×边长×边长圆柱表面积:2×底面积+侧面积圆柱体积:底面积×高圆锥体积:底面积×高×1/3梯形面积:(上底+下底)×高÷2
圆柱体的体积公式:体积=底面积×高,如果用h代表圆柱体的高,则圆柱=S底×h长方体的体积公式:体积=长×宽×高如果用a、b、c分别表示长方体的长、宽、高则长方体体积公式为:V长=abc正方体的体积公式
你是什么年级的学生,大学用微积分来做,你有时间和我联系我给你证明,我到是发到你邮箱里面.你该我发给邮件到是我还给你用高中的方法给你证明,好吧?
一、圆柱圆柱的定义1、以矩形的一边绕着另一条边旋转360°,所得到的空间几何体叫做圆柱,即AG矩形的一条边为轴,旋转360°所得的几何体就是圆柱.其中AG叫做圆柱的轴,AG的长度叫做圆柱的高,所有平行
圆锥的体积 一个圆锥所占空间的大小,叫做这个圆锥的体积. 一个圆锥的体积等于与它等底等高的圆柱的体积的1/3 根据圆柱体积公式V=Sh(V=rrπh),得出圆锥体积公式:圆锥V=1/3Sh S
长方体:V=a·b·h=S底·高S表=(a·b+b·c+a·c)·2P·S·无需推导公式正方形:V=a³=S底·高S表=6·a²P·S·无需推导公式圆柱:V=πr²·hS
长方体正方体是把他们分成棱长为1的小正方体推导来的圆柱是和圆的面积推导类是把它切成西瓜牙状分两半对插形成类似与长方体的然后通过长方体的地面积相当于圆的面积高相等推得圆锥则是通过等底等高的两个圆柱形和圆
似积分
将圆柱体积视为很多个圆累计起来的,所以V=SH,又S=再答:后面我这里打不出来了sorry
圆锥沿高分成k分每份高h/k,第n份半径:n*r/k第n份底面积:pi*n^2*r^2/k^2第n份体积:pi*h*n^2*r^2/k^3总体积(1+2+3+4+5+...+n)份:pi*h*(1^2
圆柱体积=底面积×圆柱的高圆锥体积=底面积*高*1/3
数学书上有详细地推导过程.去看看书吧.再问:我都没看到?再答:比如圆柱的体积推导过程在人教版六年级下册第19页。再问:长方体和正方体的体积推导过程又在那里?再答:应该在五年级数学书上吧。再问:那一页?
因为当n越来越大,总体积越接近于圆锥体积,8/k越接近于1所以pi*h*r^8*(88/k)*(88/k)/8=pi*h*r^8/8因为V柱=pi*h*r^8所以V锥是与它等底等高的V柱体积的8/8
把圆锥沿高分成k分每份高h/k,第n份半径:n*r/k第n份底面积:pi*n^2*r^2/k^2第n份体积:pi*h*n^2*r^2/k^3总体积(1+2+3+4+5+...+n)份:pi*h*(1^
要说推导过程啊……这应该是要用微积分的.就象圆的面积的推导那样,可以用两种办法,一是把圆台横向拆成一片一片的圆片,每一片按圆柱算积分积起来;另一种是像切圆那样把圆台从圆心纵向切成一片一片的,每一片按照
把圆柱体转化为长方体(就像圆形转化为近似长方形一样),根据长方体体积公式:底面积乘高,推导出圆柱体积=底面积乘高.通过实验证明,等底等高的圆柱体和圆椎体之间的关系:圆锥体是和他等底等高的圆柱体体积的三
圆锥的体积 一个圆锥所占空间的大小,叫做这个圆锥的体积. 一个圆锥的体积等于与它等底等高的圆柱的体积的1/3 根据圆柱体积公式V=Sh(V=rrπh),得出圆锥体积公式:圆锥V=1/3Sh S
设底面半径为R,高为h.建立坐标系,其中原点为圆锥顶点,z轴为圆锥轴线,圆锥倒立.根据几何关系不难知道,位于z处的平行于底面的截面,半径为r(z)=zR/h,所以圆锥体积为∫π[r(z)]^2dz=π