圆心O的直径AB垂直于弦CD于点P,且点P是半径OB的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 06:02:39
连接OD在直角三角形OPD中,OD=1/2AB=5,OP=根号2,所以PD=根号(OD2-OP2)=根号23根据垂径定理,CD=2PD=2根号23有条件没有用到,你确定题没错吧.解法就这样.
证明:连接BD,设AE与OC交于F,DE与BC交于G则在三角形AFO和三角形DGB中角FAO=角GDB(都是弧EB对的圆周角)又因为角AOF=2*角ABC且同弦CD垂直于直径AB易知角ABC=角ABD
先作OF⊥CD,OG⊥AB.∵OG在直径上,∴AG=BG=(5+9)÷2=7又∵AE=5,∴GE=9-5=4又∵AB⊥CD,OF⊥CD,OG⊥AB,∴矩形EFOG,GE=OF=4所以弦心距为4
连接OD由题可知OC=2,OD=4在直角△DCO中,求得DC=2又根号3,得∠DOC=60°∴S扇形DOA=(60°/360°)*π*OD^2=8π/3∴S扇形DCE=(90°/360°)*π*CD^
不妨设圆O的半径是1,则易知圆B的半径是根号2,圆A的半径是1三角形AHB中,AH=1,BH=根号2,AB=2根据余弦定理得cos角HAB=(AH²+AB²-BH²)/(
1、取CD中点G,连接OG,CD为圆O的弦,OG⊥CD,OG∥AE∥BF,O为AB中点,∴G为EF中点故EG=GF又CG=DG,EG-CG=FG-DG,即CE=DF2、由1)OG=1/2(AE+BF)
B延长PO交圆于H,延长CO交圆于E,角DCP=角PCE所以弧DP=弧PE=弧CH,所以CD平行HP,所以OP垂直AB,所以点P的位置不变或者多画几个就出来了
作OM⊥CD于点M则MC=MD∵AE⊥CD,BF⊥CD∴AE‖OM‖BF∵AO=BO∴ME=MF∴MC-ME=MD-MF∴CE=DF再问:∵AO=BO∴ME=MF为什么再答:AO=BO(半径)AE‖O
这个题目有问题吧,AB是直径,C是弧AB的中点,CD垂直于AB的话,D点应该和圆心O重合.
证明:∵OA=OB,CD⊥AB∴∠AOD=∠BOD(三线合一)∵OD=OD∴△AOD≌△BOD(SAS)∴AD=BD数学辅导团解答了你的提问,理解请及时采纳为最佳答案.
证明:连接AC,BC∵CD⊥AB,【垂直弦的直径平分弦,并平分该弦所对的两条弧】∴弧AC=弧AD∴∠ACD=∠ABC【同圆内,等弧所对的圆周角相等】∵OC=OB∴∠OCB=∠OBC=∠ACD∵∠DCP
记AE于OC相交于点F,DE于BC相交于点G连接AC,BD因为角CAO与角CDB对应的弧同为弧CB所以角CAO=角CDB因为OA=OC所以角CAO=角ACO因为弦CD垂直于直径AB所以BD=BC所以角
(1)证明:连接OE,∵DE∥OA,∴∠COA=∠ODE,∠EOA=∠OED,∵OD=OE,∴∠ODE=∠OED,∴∠COA=∠EOA,又∵OC=OE,OA=OA,∴△OAC≌△OAE,∴∠OEA=∠
这位同学你的题目表的有些小问题,我现在重新叙述一遍题干,你看看是不是和你要表达的意思一样:△ABC内接于圆O,AB是圆O的直径,点D在圆O上,圆O过C点的切线交AD的延长线于点E,且AE垂直于此切线,
证明:延长PS交圆O于T,连接QT∵PQ⊥AB,AB是圆O的直径∴AB垂直平分PQ【垂弦定理】∴SP=SQ∴∠TPQ=∠RQP∴弧QT=弧PR【相等圆周角所对的弧相等】∵弧BP=弧BQ【直径平分垂直的
AE垂直CD,CD//AB=>AE垂直AB,又AB是圆O的直径且A点在圆上=>AE就圆O的切线
半径为5再问:我草坑爹啊没这选项再答:不会吧,我再算算再问:给个过程吧再答:好设AP=X所以BP=5X半径AO=BO=3X所以OC=3XOP=2X因为三角形OPC为直角三角形所以9X^2=25+4X^