圆o是三角形abc的外接圆ae平分角bac交圆O于点E,交BC于点D,I BC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 19:10:18
过圆心O作OG垂直BC交BC于G点可知G为BC的中点,因为EF垂直BC,AD垂直BC,所以EF‖OG‖AD,又因为O为AE的中点,得G为DF的中点,所以BF=BG+GF=CG+DG=CD,即BF=CD
因CG垂直于AB,则CD=DG且弧AC=AG;因弧AC等于弧CF,所以弧AG=CF;则角ACG=CAF所以三角形ACE为等腰三角形,AE=CE
解题思路:连接OC.根据圆周角定理求得∠AOC=2∠B,再根据等腰三角形的性质和三角形的内角和定理即可求解.解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.Open
证明:连接ODP为三角形ABC内切圆心,所以∠BAD=∠CAD弧BD=弧CD所以OD⊥BC在△ABD和△ADE中∠BAD=∠DAEAD²=AB×AE,即AB/AD=AD/AE所以△ABD∽△
∵AB是⊙O直径CD⊥AB∴弧AC=弧AG∵弧AC=弧CF∴弧AG=弧CF∴∠ACG=∠CAF∴AE=CE
题目没说是等边三角形,如果是的话,那么很好算.边长为6,则正三角形的高等于3根号3,三条中线的交点是外接圆的圆心,它到每个三角形的顶点距离等于中线长的三分之二.所以,用3根号3乘以三分之二,得2根号3
sinB=1.8/3sinB=2/2R正弦定理得R=5/3
∵弧AC=弧FC∴∠B=∠CAF(等弧所对圆周角相等)∵AB是直径∴AC⊥BC∴∠CAB+∠B=90°∵∠CAB+∠ACD=90°∴∠B=∠ACD∵∠B=∠CAF(已证)∴∠ACD=∠CAF∴CE=A
在三角形ABC形中,cosA=1/3.===>sinA=(2√2)/3.设外接圆半径为r,则由正弦定理知,2r=|BC|/sinA=2/[(2√2)/3]=3/√2.===>r=3/(2√2).===
证明:连OB,并延长OB交圆O于M,连MC,因为∠A和∠BMC所对的弧为BC所以∠A=∠BMC,因为∠A=∠CBD所以∠BMC=∠CBD因为BM是直径所以∠BCM=90°所以∠BMC+∠MBC=90°
角ABC=60过O作OD⊥AC于D可得∠DOC=60∠AOC=120∠ABC=60(同一弧长所对的圆周角等于圆心角的一半)
小乖的考拉:第(1)题中,是不是求∠ADB的度数啊?
角boc=55*2=110度.同弧所对圆心角是圆周角的二倍.再问:能详细点吗==表示生病了-没去学校再答:顶点在圆心的角,叫做圆心角。圆心角α的取值范围是0°
证明:以E为圆心,以BC长为半径画弧交元O于F点.连接EF,FA.则:EF=BC,∠FAE=90°所以:∠EAF=∠DAC (弦相等,弦所对的圆周角相等)所以:RT△ADC∽RT△EFA所以
证明:连接ODP为三角形ABC内切圆心,所以∠BAD=∠CAD弧BD=弧CD所以OD⊥BC在△ABD和△ADE中∠BAD=∠DAEAD²=AB×AE,即AB/AD=AD/AE所以△ABD∽△
∵AB=AD+BD=11,∴本题中AB不是直径,如果是直径,直径可求.∴不是用射影定理,本题用相似三角形.根据勾股定理:AC=√(CD^2+AD^2)=3√5,BC=√(CD^2+BD^2)=10,过
过圆心O作OG垂直BC交BC于G点可知G为BC的中点,因为EF垂直BC,AD垂直BC,所以EF‖OG‖AD,又因为O为AE的中点,得G为DF的中点,所以BF=BG+GF=CG+DG=CD,即BF=CD
(1).连BE,角E=角ACB,角ABE是直角,所以ABE和ADC相似,AB/AE=AD/AC,又AB=BC,BC*AC=AD*AE(2).FAC和FCB相似(弦切角ACF=角B),FA/FC=FC/
过O作OH⊥BC于H,则BH=CH(垂径分弦),∵DF⊥BC,AE⊥BC,∴DF∥OH∥AE,∴EH/FH=AO/BO=1(平行线分线段成比例),∴EH=FH,∴BH-FH=CH-EH,即BF=EC.
连接BD,∵AE=AC,∴∠AEC=∠ACE,又:∠ACB=∠ADB﹙同弧所对的圆周角相等﹚,∠AEC=∠BED﹙对顶角相等﹚,∴∠BED=∠BDE,∴△BDE是等腰△,又∠CAD=∠CBD﹙同弧所对