圆O是△ABC的外接圆,BC是圆O的直径,∠ABC=30°,过点B作圆O的切线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 01:01:48
圆O是△ABC的外接圆,BC是圆O的直径,∠ABC=30°,过点B作圆O的切线
在△ABC中,BC=7,CA=5,AB=3,最大的角是多少度?怎么的求,接着,外接圆的中心是O,AO和外接圆的交点是D,

1.最大边对应最大角,所以∠A最大利用余弦定理cosA=(AB^2+AC^2-BC^2)/2AB*AC=-1/2则∠A=120度2.因为OA为外接圆半径,AD为直径,AD=2AO=2r,由正弦定理BC

如图,AE是△ABC外接圆O的直径,AD是△ABC的边BC上的高,EF⊥BC,F为垂足.

(1)证明:过O作OM⊥BC于M,则CM=BM;∵AD⊥BC,EF⊥BC,OM⊥BC,∴AD∥OM∥EF,又∵OA=OE,∴DM=MF,故CM-DM=BM-MF,即BF=CD.(2)连接BE,则∠AB

如图,圆O是三角形ABC的外接圆,AD是BC边上的高,若BD=8,AD=3,求圆O的面积

题目不完整,题目是不是这样?圆O是三角形ABC的外接圆,AD是BC边上的高,已知BD=8,CD=3,AD=6,求圆O的面积为多少?记住定理:设外接圆半径为R,三边长为a,b,c,S为三角形面积则有关系

圆O是三角形ABC的外接圆,cosA=1/3,BC=2,求这个圆的面积

在三角形ABC形中,cosA=1/3.===>sinA=(2√2)/3.设外接圆半径为r,则由正弦定理知,2r=|BC|/sinA=2/[(2√2)/3]=3/√2.===>r=3/(2√2).===

如图,圆O是等边三角形ABC的外接圆,P是BC上一点,连接PB、PC,问:PA、PB、PC之间有和数量关系?为什么?

以P为圆心,PB为半径画弧,交AP于E,连接BE,则△PBE为正三角形∵∠AEB=180-60=120º,∠CPB=60+60=120º,∠BAE=∠BCP,AB=CB∴△ABE≌

已知:如图,圆O是△ABC的外接圆,圆心O在这个三角形的高CD上,E、F分别是边AC和BC的中点,求证:四边形CEDF是

证明:∵AB为弦,CD为直径所在的直线且AB⊥CD,∴AD=BD,又∵CD=CD,∴△CAD≌△CBD,∴AC=BC;又∵E,F分别为AC,BC的中点,D为AB中点,∴DF=CE=12AC,DE=CF

已知圆O是三角形ABC的外接圆 CD是AB边上的高,AE是圆O的直径.求证:AC*BC=AE*CD

证明:以E为圆心,以BC长为半径画弧交元O于F点.连接EF,FA.则:EF=BC,∠FAE=90°所以:∠EAF=∠DAC (弦相等,弦所对的圆周角相等)所以:RT△ADC∽RT△EFA所以

圆O是三角形直角ABC的外接圆,∠ABC=90°,PA是圆O的切线,且PA=PB,若PA=√3,BC=1,求圆O的半径

过点P作PE垂直AB,垂足为E,因PA=PB,所以E是AB中点,所以PE过点圆心O,因PA是圆O的切线,所以角OAP=90度,所以角OAE=角APO,今角OAE=角APO=a,半径为R,因∠ABC=9

在RT△ABC中,∠ACB=90°,AC=8cm,BC=6cm,圆o是△ABC的外接圆,∠ACB的平分线分别交圆o,AB

⑴,∵∠ACB=90°,AC=8cm,BC=6cm,CD平分∠ACB.∴AB=10cm,∠ACD=∠BCD=∠ABD=∠BAD=45°,AD=BD,∠ADB=90°.∴AD=5√2.⑵,直线PC与⊙O

如图,已知圆O是△ABC的外接圆,AD⊥BC于点D,AE是圆O的直径,是说明AB*AC=AD*AE

连接BE,ΔABE是RtΔ则RtΔEBA∽RtΔCDA(因为角C=角E)所以AC:AE=AD:AB即AB*AC=AD*AE

(2009•威海)已知⊙O是△ABC的外接圆,若AB=AC=5,BC=6,则⊙O的半径为(  )

过A作AD⊥BC于D,△ABC中,AB=AC,AD⊥BC,则AD必过圆心O,Rt△ABD中,AB=5,BD=3∴AD=4设⊙O的半径为x,Rt△OBD中,OB=x,OD=4-x根据勾股定理,得:OB2

如图,已知圆O是△ABC的外接圆,AB=BC,AD是BC边上的高,AE是圆O的直径,

(1).连BE,角E=角ACB,角ABE是直角,所以ABE和ADC相似,AB/AE=AD/AC,又AB=BC,BC*AC=AD*AE(2).FAC和FCB相似(弦切角ACF=角B),FA/FC=FC/

如图在△ABC中,AB=AC,点O是△ABC的外心,连接AO并延长交BC于D,交三角形ABC的外接圆于点E过点B做圆O的

你能求出第一问,说明你已经发现AE其实是△ABC外接圆的直径,设外接圆圆心为QQE=r=1.5,DE=0.6∴QD=0.9∵O是外心,而AB=AC∴AO是△ABC的高和中线∴AE⊥BC,BD=CD有勾

已知:AD是三角形ABC外接圆O的直径,AE是三角形ABC边BC上的高,DF垂直BC,F为垂足

过O作OH⊥BC于H,则BH=CH(垂径分弦),∵DF⊥BC,AE⊥BC,∴DF∥OH∥AE,∴EH/FH=AO/BO=1(平行线分线段成比例),∴EH=FH,∴BH-FH=CH-EH,即BF=EC.

如图,在△ABC中,O是它的外心,BC=24cm,O到BC的距离是5cm,则△ABC的外接圆的半径是______cm.

∵O为外心,OD⊥BC,∴BD=12BC=12,又OD=5,∴由勾股定理,得OB=BD2+OD2=122+52=13,∴△ABC的外接圆的半径是13cm.故本题答案为:13.

在rt三角形abc中,角acb=90°,bc>ac,圆o是三角形abc的外接圆,以c为圆心,bc为半径作

(1)证明:连接CE因为CD=CE=CB所以角CDE=角CED角CEB=角CBE因为角ACB=90度角ACB+角CDE+角CED+角CEB+角CBE=360度所以角CDE+角CBE=135度角CED+

圆O是△ABC的外接圆,∠BAC的平分线交圆O于点D,弦DC=2根号3,圆心O到弦BC的距离为1,则圆O的半径为?

连结OD交BC于点H,延长DO交圆O于点E,连结CE.因为AD是角BAC的平分线,所以弧BD=弧CD,因为DE是圆O的直径,所以DE垂直于BC于H,(垂径定理)角DCE=90度(直径所对的圆周角是直角