回归检验中p接近0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 07:57:34
要看每一个自变量的sig是否小于0.05,只要有一个不满足,则应选择STEPWISE方法,重新计算.
有很多检验:相关系数、R2,F统计量及SIG,回归系数的显著性检验(T统计量及SIG)等.
这个F值不是用来检验R平方的.看图,不明白再来问我.再问:R的平方我明白,F检验是检验模型整体的显著性吗?R的平方只是检验模型的一个评价指标,它本身是不用检验的,是吗?再答:对的,但是我们在判断模型的
DW检验用于检验随机误差项具有一阶自回归形式的序列相关问题,也是就自相关检验D-W检验:德宾—沃森统计量(D-W统计量)是检验模型是否存在自相关的一种简单有效的方法,其公式为:D-W=∑(Et-Et-
我还记得第二个问题的答案:等价
先做单位根检验然后做回归分析基于回归分析生成残差序列再看残差序列是否平稳来检验是否存在协整关系
wald下就为wald值sig.下就为所求的P值
多元线性回归之前不能做数据标准化处理,否则会出现错误的结果.标准化之后自变量和因变量数列几乎相同或者是相差无几了,所以常数项肯定几乎是0
你有没有统计软件,SPSS,eviews都可以很容易得到的用excel也行,点击工具-数据分析(没有的话,先选中加载宏-选中分析工具库,之后就会出现数据分析)-在里面找到“回归”,然后就可以出来啦.
这是为了检验回归方程有没有统计学意义,比如你建立了一个回归方程,对方程进行检验时,p大于0.05,这时候这个回归方程没有统计学意义.统计学意义不等同于现实意义.我举个例子,在某一度假村,把蚂蚁的数量与
t检验常能用作检验回归方程中各个参数的显著性,而f检验则能用作检验整个回归关系的显著性.各解释变量联合起来对被解释变量有显著的线性关系,并不意味着每一个解释变量分别对被解释变量有显著的线性关系
h为测试结果,若h=0,则可以认为X是服从正态分布的;若h=1,则可以否定X服从正态分布;p为接受假设的概率值,P越接近于0,则可以拒绝是正态分布的原假设;jbstat为测试统计量的值;cv为是否拒绝
很正常,说明模型拟合的好啊.很管用.
因为以估计系数=0为原假设,才可以构造出已知分布的检验统计量,再代入具体的样本值,可以确定是否有小概率事件发生,以此来决定是否推翻原假设.
第一问:回归分析考虑了三个因素,有可能存在多余变量或者缺失变量导致系数不显著,这是非常正常的.因为你不能确定你模型设定的合理性,所以模型需要修正和完善第二问:你只考虑管理成本和GDP增速,没有考虑其他
=FINV(0.05,因子自由度,误差项自由度)一般取a=0.05,也可以取0.01,取决于你容忍的错误率.求出临界值后,再和F值比较如果F值>临界值表示此因子贡献显著,否则,不显著
多元回归问题:对于一组变量(x1,...,xp;Y)作了n次观测,得到:(xi1,...,xip;yi),i=1...n;Yi=β0+β1xi1+...+βpxip+εi,i=1...n;构成p元回归
显著性在你给的条件下没有定义.首先OLS的多元回归,实际上是这样:解方程y=b0+b1x1+b2x2,如果你的数据多于m+1个(我们就以你的这个例子说吧,就是多于3组数据,比如100组),这个时候方程
应满足的条件?你是指什么?那些检验都是根据实际情况来选择的是指置信区间吗?(1)方差未知Step1 打开Excel工作表,进入其工作界面,在Excel中编制数据表,输入样本数据,
相当于没有找到预测变量,看你是分析影响因素还是预测,影响因素的话r2没必要特别高的,预测要求大于0.7