回归分析拟合度要到多少
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 21:14:03
拟合曲线是一条标准的直线,是直线就会很容易得出他的方程,回归方程就是这条曲线的方程.方程一般有两个常数,离因变量近的是回归系数,加号或者减号后面的是截距.回归系数实在没有什么好说的,截距的问题多一些.
logistic回归又称logistic回归分析,主要在流行病学中应用较多,比较常用的情形是探索某疾病的危险因素,根据危险因素预测某疾病发生的概率,等等.例如,想探讨胃癌发生的危险因素,可以选择两组人
首先要知道饱和流量的计算方法,通过对交通调查数据进行回归分析,得出车流量与车头时距的函数关系,计算出不同车道宽度对应的饱和车头时距. 曲线拟合回归分析法在胡良建m
线性回归是利用数理统计中的回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法之一,运用十分广泛.有一类模型,其回归参数不是线性的,也不能通过转换的方法将其变为线性的参数.这类模型
拟合度低问题不大关键是回归模型的检验即这里的sig是否小于0.05,如果是的话,就说明了这个回归模型可以用的,只是你目前这些自变量只能够解释那么多的再问:系数(a)模型非标准化系数标准系数共线性统计量
有点低.你有几个变量再问:四个自变量,两个控制变量,两个因变量。拟合度和变量个数有关系?再答:如果是管理学的实证分析拟合度不是最重要的问题再问:这样啊,我是学管理的,顺便问一下,用spss做回归分析的
按照回归的表现形式:线性回归与非线性回归研究一个因变量与一个自变量之间的相关分析是回归分析的基础和前提,回归分析则是相关分析的深入和继续.相关
做有序回归,不是去看R2,没用的coxandsnell是伪R2,已经不是你理解的R2了我经常帮别人做这类的数据统计分析再问:那应该看哪个呢?可不可以说一下这三个表分别表示什么意思呢?
这个可以在非线性回归中直接做,如果你不会,可以先将这些非线性模型转换成线性的再进行回归.比如第二个模型,你先将ln(1-Q)求出来,记作Y,然后再用Y=-kt进行线性回归,不知道你是否明白我的意思,这
确实有“相关系数检验表”,我只在一些关于预测的书中看到过,比如《经济预测技术》(清华大学出版社1991,李一智主编),而统计书中却没见过.R的临界值是与自由度有关系的,它的值和F检验的临界值有某种函数
y=constant+b1x+b2x^2你是数据对应不上,我看不清楚应该是y=751.110t+(-824.944)*x+282.812*x^2
因为这个自变量贡献率小,通过T检验和F检验,只说明了这个变量对因变量有显著影响,但拟合优度低说明它不是最主要的影响因素,或者至少你在方程中忽略了一些其它有影响的因素.再问:我一般回归分析都说两者之间存
你好可以用lsqnonlin进行拟合用法x=lsqnonlin(@fun,x0,lb,ub,options,P1,…)其中fun是名为fun.m的m文件,里面有你想要进行拟合的函数形如function
计算残差的平方和,谁小选谁.你的数据呢,我可以做好的.再问:我算了一下,发现3---4阶多项式拟合残差平方和递减阶数在增加这个值就增大了这是不是我哪里出了问题了?还是能得出这一组数据用四阶拟合效果最好
a=[320320160710320320320];f=[0.180.180.180.180.090.360.18];v=[2.31.71.71.71.71.71];F=[38.829.2326.53
用相关指数R2的值判断模型的拟合效果,R2越大,说明残差平方和越小,模型的拟合效果越好,故①正确;在回归分析中,回归直线过样本点中心:(.x,.y)点,故②正确;带状区域的宽...
你先找到自变量和因变量,就可以直接利用SPSS中的曲线回归中logistic的模型拟合就可以了
当然喽,调整后的Rde^2是可以反映出df的.
2、各个自变量之间存在共线性问题,冲销了对因变量的影响,建议看单个自变量的T值,把不显著的剔除.然后,逐步回归,看哪个自变量加入后使得整个模型的拟合优度降低.3、只看R²不行,还要看adjR
是有这种可能性的只要你操作没错就要相信自己当然,你要考虑模型的选择我经常帮别人做这类的数据分析的再问:我的变量有10多个,可是任选其中一个变量做加权回归时也有0.9几,而且我的是截面数据,会有别的问题