回归中F值不显著 原因
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:50:20
t检验常能用作检验回归方程中各个参数的显著性,而f检验则能用作检验整个回归关系的显著性.各解释变量联合起来对被解释变量有显著的线性关系,并不意味着每一个解释变量分别对被解释变量有显著的线性关系
不显著就应该剔除,除非你想硬塞进这个自变量,那你只有改数据了
当然不是,R2是用来衡量解释变量对被解释变量的解释力的,显著性需要看回归系数的t统计量或F统计量,看起在选点的显著水平下是否显著.再问:作者认为种子重量每增加1g发芽率就提高2.17%,对吗?再答:那
台湾民众对大陆当局的不信任,他们不想买房【有土地权】变租房【只有地上权四十至七十年】,不想上各国外网站浏览也不准,不想在网路上发言还要处处有地雷【禁词】...太多了,说穿了就是人家已经是放飞的鸟,海空
你这里面从各个变量的t检验看显然有变量不显著,把这些变量剔除掉重新建立新的回归模型就是了,哪儿有在这种伪回归的情况下纠结方差分析是不是显著的……再问:那有无回归模型显著,但有个别变量不显著的情况,请教
SPSS方差分析结果是否显著性,就是看F值的大小和N,它们决定了显著水平的高低.
如果是非常不显著,建议删除,其它情况比如15%的水平下是显著的,建议保留,这得根据实际问题来.可以试着先将最不显著的剔除掉,再看看方程,也许就会出现显著系数增多的情况,建议一个个删除.
β对应的P值大于所给的显著性水平一般取α=0.05意为β对应的变量对因变量的影响明显
参数显著的,就是说该参数估计量的统计性质可以拒绝原假设:该参数=0,即该参数显著不等于0,也就是该参数前面的变量对y确实有影响,出现在回归方程里面是有道理的.参数的显著性,是实证模型有意义的关键所在.
你有没有统计软件,SPSS,eviews都可以很容易得到的用excel也行,点击工具-数据分析(没有的话,先选中加载宏-选中分析工具库,之后就会出现数据分析)-在里面找到“回归”,然后就可以出来啦.
自己在报告里面手工加进去好了spss结果除了相关分析会自动加上去*之外其他的都不会加上去的
交互作用分析要有重复实验的.没有重复实验的话,组内误差也即Error的自由度df为0,导致后续的结果无法分析.一般解决的方法,就是补做重复实验.再问:那请问怎么补做重复实验?我上网搜着教程,结合课本的
很正常,说明模型拟合的好啊.很管用.
看来LZ应该是刚开始作统计分析啊,其实里面的数据还是比较简单的,第一行MultipleR表示R^2的值,第二行则表示R值,第三行表示调整R方,一般R^2是衡量回归方程是否显著的决定因子,但只是一方面.
刚看了一篇外文文献,其中提到了几个变量之间的相关性分析.作者用SPSS得出A与B的相关性系数约为0.09,但显著性水平大于0.05即不显著.随后继续作回归性分析(未阐明是否是多元线性)结论是BETA值
因为北美洲陆地面积不是特别大,导致海陆热力性质差异相对较小.而且墨西哥湾深入了美洲内陆,是的暖流的作用加强,而且长期维持.气压带和风带季节性移动是存在的,但是影响不大,主要还是墨西哥高原的阻挡,使得水
不能拒绝二次adm项系数为0的假设所以不显著你可以看看二次回归和一次回归R方的差异如果不大说明一次v即可.再问:但是R^2很大啊。。。再答:一次和二次的R方差异是多少?再问:相差不大。。。
1.所用的确定性函数不恰当2.忽略了某些因素的影响3.存在观测误差
虚拟变量,你可以试试0-1这样的虚拟变量,含0的,对应的y低,含1的对应的y高(假设正相关).其实主要看你的虚拟变量打算加在哪里,加在常数项就这么做,加在系数项的话就是另外一组数据了.你可以先写个含虚
就是一元一次如果y=ax^2设z=x^2就变成y=az可以看这个参考y=polyfit(x,y,2)只是拟合回归方程而已.p接近于0的话是说明回归显著,即系数显著不为0也就是x^2对y的影响显著你合度