四变形abcd中 bd垂直ad,角A等于45度
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:22:03
1、过AB中点E,连接CE,DE.在△ABC中,∵AC=BC,E为AB中点,∴AB垂直于CE.同理AB垂直于DE.2、∵AB垂直于CE,AB垂直于DE,∴AB垂直于△CDE,∴AB垂直于CD.
空间四边形可以画成三棱锥.过顶点A作BCD的垂线,垂足为O.连接BO并延长交CD于E,因为AB⊥CD,AO⊥CD,所以CD⊥面ABE,所以CD⊥BE,即BE为CD的高.连接CO并延长交BD于F,同理可
取AB中点E,由等腰三角形的性质可得CE⊥AB,且DE⊥AB,再由线面垂直的判定定理可得AB⊥平面CDE,从而得到AB⊥CD.证明:取AB中点E,连接DE、CE,∵BC=AC,E为AB中点,∴CE⊥A
提示,利用等腰三角形做辅助线,做题要先有空间思维,可画个空间简图.简单证明如下:连接BD,三角形ABD中,取底边BD的中点E,连接AE;三角形CBD中,连接CE因已知,AB=AD,CB=CD所以三角形
证明:取AB中点M连结CM、DM∵AC=BC∴CM⊥AB∵AD=BD∴DM⊥AB则AB⊥平面CDM∴AB⊥CD再答:一定要给好评点满意哦!∧_∧
∵ AC=BC,AD=BD取 AB的中点E,连接BE ,CE那么 BE⊥AB CE⊥AB∴AB⊥平面 C
连结BC,AD.设A在面BCD上的射影为O.连结BO,CO,DO.则∵CD⊥AB,CD⊥AO,AB∩AO=A,∴CD⊥面ABO.而BO在平面ABO内,∴BO⊥CD.同理,DO⊥BC.因此,O是△BCD
作AO⊥平面BCD垂足为O连接BO交DC于M连接CO交BD于N由三垂线定理BM⊥DCCN⊥BDO为△BCD的垂心连接DO则DO⊥BC由三垂线定理BC⊥AD
解题思路:根据线面平行的判断定理以及面面垂直的判定定理证明。解题过程:
过B作BE⊥CD交CD于E,过C作CF⊥BD交BD于F,令BE∩CF=O.∵CD⊥AB、CD⊥BE,AB∩BE=B,∴CD⊥平面ABE,又AO在平面ABE内,∴AO⊥CD.∵BD⊥AC、BD⊥CF,A
做AO垂直与底面BCD,所以AO垂直于BC,因为有BC垂直与AD,所以BC垂直于平面AOD,所以DO垂直于BC,同理可证BO垂直与CD,那么O就是底面三角形的垂心所以CO垂直与BD,又AO垂直与BD,
1.取AD中点Q,连结PQ,因为△PAD是等边三角形,所以PQ⊥AD,又因为平面PAD⊥平面ABCD,所以PQ⊥平面ABCD,所以PQ⊥BD.因为AD=4,AB=4√5,BD=8,所以AD²
做B点在面ACD上的射影,并延长交AC与B',因为AC⊥BD,所以AC⊥B'D.以B'作原点,以BD作X轴,以AC作Y轴,以通过B'⊥面ADC作Z轴,根据⊥CD,各点设未知数,表示出向量乘积为0,变形
证明:过A作AO⊥平面BCD于H∴AH⊥CD∵AB⊥CD∴CD⊥平面ABH∴CD⊥BH同理BC⊥AH∴H为△BCD垂心∴CH⊥BD(1)又AH⊥平面BCD∴AH⊥BD(2)由(1)(2)BD⊥平面AC
证明:作AO垂直平面BCD,垂足为O,则CD垂直AO,有AB垂直CD,所以CD垂直平面ABO,故CD垂直BO.同理CO垂直BD.所以O为垂心,DO垂直BC.可得BC垂直平面ADO,所以AD垂直BC
连结BC,AD.设A在面BCD上的射影为O.连结BO,CO,DO.则∵CD⊥AB,CD⊥AO,AB∩AO=A,∴CD⊥面ABO.而BO在平面ABO内,∴BO⊥CD.同理,DO⊥BC.因此,O是△BCD
过A作平面BCD的垂线,交平面于O则BO,CO,DO为AB,AC,AD在该平面上的射影.因为AB与CD垂直,AD与BC垂直根据三垂线定理得BO与CD垂直,DO与BC垂直又因为三角形三条高交于一点,因此
郭敦顒回答:在“AD//BD”中,可能是“AD//BC”之误;在“二面角A-BE-D”中E可能是P之误,以此作答.∵四棱锥P-ABCD中,PB垂直面ABCD,底面ABCD为直角梯形,AD//BC,AB
证明:∵AB⊥AD,BD⊥DC∴∠BAD=∠BDC=90º∵BD²=AB×BC∴BD/AB=BC/BD∴Rt⊿ABD∽Rt⊿DBC【对应直角边和斜边成比例的直角三角形相似】∴BD/