向量证明正方形对角线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:05:44
设平行四边形相邻两个边AB=a,AD=b(都是向量).则AC=a+b,DB=a-b,两对角线的平方和=(a+b)²+(a-b)²=a²+b²+a²+b
向量BA+向量AD=向量BD向量AB+向量BC=向量AC因为向量AD=向量BC所以向量BD=向量AC则|BD|=|AC|
为方便,下面#后的代表向量.#CD=#BD-#BC,#AC=#BC-#BA,#AD=#BD-#BA.对角线的点积:#AC·#BD=(#BC-#BA)·#BD=#BC·#BD-#BA·#BD两组对边平方
因为是正方形,所以对角线相等,设为2X,两条对角线把正方形分成四个面积相等的直角三角形,两条直角边为对角线的一半X,所以正方形的面积等于四个三角形的面积和,又因为一个三角形的面积等于X*X*1/2,所
设四边形为ABCD,对角线交点为O,则AB=OB-OACD=OD-OC因为OB=-ODOA=-OC所以AB=-CD就有一组对边平行同理可知另一组对边平行得证
设平行四边形ABCD则AC^2+BD^2=(AB+BC)^2+(BA+AD)^2=AB^2+BC^2+2AB*BC*cos(π-B)+BA^2+AD^2+2BA*AD*cos(π-A)=AB^2+BC
因为是平行四边形,(以下字母均是向量)ab+bc=acbc+cd=bd因为|ac|=|bd|所以(ab+bc)^2=(bc+cd)^2ab^2+bc^2+2ab*bc=bc^2+cd^2+2bc*cd
证平行四边形ABCD向量BD=AD-AB向量AC=AB+BC|BD|=AC|即|AD-AB|=|AB+BC|所以AD*AB=-AB*BC即AD*AB=BA*BC|AD|=|BC||AB|=|AB|所以
矩形ABCD向量AD=-CB,向量AB=-CD,AD+AB=-(CB+CD)|AD+AB|=|CB+CD|
设平行四边形ABCD其中AC=BD.证:向量AC=向量AB+向量BC(1)向量BD=向量BA+向量AD(2)两式两边平方得AC^2=AB^2+BC^2+2AB*BC*COS(BAD)(3)BD^2=B
因为正方形的对角线相等且互相垂直平分,就可证正方形的两条对角线把正方形分成四个全等的等腰直角三角形
应证明对角线互相平分的四边形是平行四边形证明:如图,向量DC=向量OC-向量OD 向量AB=向量OB-向量OA=-向量OD+向量OC=向量DC 故AB∥DC且AB=DC,即ABCD
设两个边向量分别为AB则两对角线向量分别为C=A+BD=A-B其一半为1/2(A+B)1/2(A-B)1/2C=1/2(A+B)=A-1/2(A-B)=A-1/2D1/2D=1/2(A-B)=B-1/
设ABCD为平行四边形,E为AC中点,则向量AE=AC/2=(AB+BC)/2向量BE=BA+AE=AE-AB=(AB+BC)/2-AB=(BC-AB)/2=(BC+BA)/2=(BC+CD)/2=B
证明:设正方形边长为a,根据勾股定理得,正方形的一条对角线为根号2a正方形对角线的平方为:根号2a*根号2a=2a^2正方形的面积为S=a^2∵1/2*2a^2=a^2∴正方形面积=正方形对角线平方的
设ABCD为平行四边形,E为AC中点,则向量AE=AC/2=(AB+BC)/2向量BE=BA+AE=AE-AB=(AB+BC)/2-AB=(BC-AB)/2=(BC+BA)/2=(BC+CD)/2=B
为方便,下面#后的代表向量.#CD=#BD-#BC,#AC=#BC-#BA,#AD=#BD-#BA.对角线的点积:#AC·#BD=(#BC-#BA)·#BD=#BC·#BD-#BA·#BD两组对边平方
楼上想法够搞笑的,是向量PA之类的PA还能分家啊?PO=PA+AO=PB+BO=PC+CO=PD+DO=PA1+A1O=PB1+B1O=PC1+C1O=PD1+D1OAO+C1O=BO+D1O=CO+
第一个:矩形对角线相互平分一条对角线和两条矩形组成的三角形的高(另一条对角线的一半)是这个三角形的高、中线(等腰三角形才有的特点)固三角形两边相等下面的就不说了自己改知道了.第二个:第二个不是梯形就可
设平行四边形相邻两边向量为a,b,则对角线向量为a+b,a-b.(1)若平行四边形是菱形,则|a|=|b|.则(a+b)(a-b)=a^2-b^2=0.即(a+b)与(a-b)垂直.(2)若对角线互相