向量证明正方形对角线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:05:44
向量证明正方形对角线
用向量法证明平行四边行两对角线的平方和等于四条边的平方和

设平行四边形相邻两个边AB=a,AD=b(都是向量).则AC=a+b,DB=a-b,两对角线的平方和=(a+b)²+(a-b)²=a²+b²+a²+b

如图所示,用向量法证明:矩形的对角线相等

向量BA+向量AD=向量BD向量AB+向量BC=向量AC因为向量AD=向量BC所以向量BD=向量AC则|BD|=|AC|

用向量方法证明空间四边形对角线相互垂直的充要条件是对边平方和相等

为方便,下面#后的代表向量.#CD=#BD-#BC,#AC=#BC-#BA,#AD=#BD-#BA.对角线的点积:#AC·#BD=(#BC-#BA)·#BD=#BC·#BD-#BA·#BD两组对边平方

如何证明:正方形面积=正方形对角线平方的一半.

因为是正方形,所以对角线相等,设为2X,两条对角线把正方形分成四个面积相等的直角三角形,两条直角边为对角线的一半X,所以正方形的面积等于四个三角形的面积和,又因为一个三角形的面积等于X*X*1/2,所

用向量法证明:对角线互相平分且相等的四边形是矩形

设四边形为ABCD,对角线交点为O,则AB=OB-OACD=OD-OC因为OB=-ODOA=-OC所以AB=-CD就有一组对边平行同理可知另一组对边平行得证

用向量证明:平行四边行两条对角线的平方和等于四边的平方和

设平行四边形ABCD则AC^2+BD^2=(AB+BC)^2+(BA+AD)^2=AB^2+BC^2+2AB*BC*cos(π-B)+BA^2+AD^2+2BA*AD*cos(π-A)=AB^2+BC

用向量法证明:对角线相等的平行四边形是矩形

因为是平行四边形,(以下字母均是向量)ab+bc=acbc+cd=bd因为|ac|=|bd|所以(ab+bc)^2=(bc+cd)^2ab^2+bc^2+2ab*bc=bc^2+cd^2+2bc*cd

1.用向量法证明:对角线相等的平行四边形是长方形

证平行四边形ABCD向量BD=AD-AB向量AC=AB+BC|BD|=AC|即|AD-AB|=|AB+BC|所以AD*AB=-AB*BC即AD*AB=BA*BC|AD|=|BC||AB|=|AB|所以

用向量证明:矩形的对角线长度相等.

矩形ABCD向量AD=-CB,向量AB=-CD,AD+AB=-(CB+CD)|AD+AB|=|CB+CD|

利用向量的数量积证明对角线相等的平行四边形是矩形

设平行四边形ABCD其中AC=BD.证:向量AC=向量AB+向量BC(1)向量BD=向量BA+向量AD(2)两式两边平方得AC^2=AB^2+BC^2+2AB*BC*COS(BAD)(3)BD^2=B

怎么证明正方形的两条对角线把正方形分成四个全等的等腰直角三角形

因为正方形的对角线相等且互相垂直平分,就可证正方形的两条对角线把正方形分成四个全等的等腰直角三角形

试用向量方法证明:对角线互相平分的四边形必是平行四边形

应证明对角线互相平分的四边形是平行四边形证明:如图,向量DC=向量OC-向量OD      向量AB=向量OB-向量OA=-向量OD+向量OC=向量DC      故AB∥DC且AB=DC,即ABCD

用平面向量证明平行四边形对角线互相平分

设两个边向量分别为AB则两对角线向量分别为C=A+BD=A-B其一半为1/2(A+B)1/2(A-B)1/2C=1/2(A+B)=A-1/2(A-B)=A-1/2D1/2D=1/2(A-B)=B-1/

利用向量的数乘与中点公式证明:平行四边形的对角线互相平分.

设ABCD为平行四边形,E为AC中点,则向量AE=AC/2=(AB+BC)/2向量BE=BA+AE=AE-AB=(AB+BC)/2-AB=(BC-AB)/2=(BC+BA)/2=(BC+CD)/2=B

如何证明:正方形面积=正方形对角线平方的一半

证明:设正方形边长为a,根据勾股定理得,正方形的一条对角线为根号2a正方形对角线的平方为:根号2a*根号2a=2a^2正方形的面积为S=a^2∵1/2*2a^2=a^2∴正方形面积=正方形对角线平方的

用向量证明平行四边形的对角线互相平分

设ABCD为平行四边形,E为AC中点,则向量AE=AC/2=(AB+BC)/2向量BE=BA+AE=AE-AB=(AB+BC)/2-AB=(BC-AB)/2=(BC+BA)/2=(BC+CD)/2=B

用向量法证明:空间四边形对角线垂直的充要条件是两组对边的平方和相等

为方便,下面#后的代表向量.#CD=#BD-#BC,#AC=#BC-#BA,#AD=#BD-#BA.对角线的点积:#AC·#BD=(#BC-#BA)·#BD=#BC·#BD-#BA·#BD两组对边平方

空间向量证明题!已知点O是平行六面体ABCD-A1B1C1D1对角线的交点,点P是空间任意一点.证明:向量PA+向量PB

楼上想法够搞笑的,是向量PA之类的PA还能分家啊?PO=PA+AO=PB+BO=PC+CO=PD+DO=PA1+A1O=PB1+B1O=PC1+C1O=PD1+D1OAO+C1O=BO+D1O=CO+

证明:对角线互相垂直的矩形是正方形 证明:对角线垂直且相等的四边形是正方形 证明:四条边都相等的四边形

第一个:矩形对角线相互平分一条对角线和两条矩形组成的三角形的高(另一条对角线的一半)是这个三角形的高、中线(等腰三角形才有的特点)固三角形两边相等下面的就不说了自己改知道了.第二个:第二个不是梯形就可

向量证明怎么用向量法证明:平行四边形成为菱形的充要条件是对角线互相垂直

设平行四边形相邻两边向量为a,b,则对角线向量为a+b,a-b.(1)若平行四边形是菱形,则|a|=|b|.则(a+b)(a-b)=a^2-b^2=0.即(a+b)与(a-b)垂直.(2)若对角线互相