参数为指数分布,E[(X-1)(X 2)]=-1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 09:47:53
解 注意:若X是一个连续型随机变量,F(x)是其分布函数,则随机变量Y=F(X)一定服从(0,1)上的均匀分布. 最好能记住这个结果,在做题时非常方便.对于本题来说,若你知道Y=1
1.因为指数分布,E(x)=1,D(x)=1,所以E(x^2)=D(x)+(E(x))^2=2D(x^2)=E(x^4)-(E(x^2))^2=积分(X^4e^-x)-4=24-4=20(用分部积分法
密度函数f(x)=1,0
事实上,任意随机变量的分布函数(CDF)均服从(0,1)上均匀分布. 补充.Y就是X的累积分布函数,累积分布函数的取值范围只能是(0,1).
先令Y=lnXF(y)=P{Y≤y}=P{lnX≤y}=P{X≤e^y}=Fx(e^y)=1-e^(-e^(y+1))此为Y的分布函数f(y)=F`(y)=e^(y+1-e^(y+1))你确定参数是e
因为随机变量X服从参数为1的指数分布,所以f(x)=e^(-x)(x>0时)而f(x)=0(x
对于X有:DX=1/4EX=1/2所以EX²=DX+(EX)²=3/4对于Y有EY=1/4所以E(2X²+3Y)=2EX²+3EY=9/4注:各个版本教材对指数
参数为1,就是λ为1
分布函数:p{Y
答案是2/(Y*Y*Y)求函数的概率密度有一个公式,如果Y(X)的导数是非0的,则可以用这个公式.这个题Y关于X的导数是大于0的,所以:(1)求Y关于X的函数的反函数,此题Y的反函数就是:Y的对数;(
解法的要点如下图,先找出分布函数的关系.经济数学团队帮你解答,请及时采纳.谢谢!
E(X)=1Ee^(-2x)=∫(0~无穷)e^(-2x)e^(-x)dx=-e^(-3x)/3|(0~无穷)=1/31+1/3=4/3再问:期望的定义式不是E(X)=∫xf(x)dx,f(x)为密度
P(X>5|X>3)=P(X>5,X>3)/P(X>3)=P(X>5)/P(X>3)=[1-F(5)]/[1-F(3)].F(x)为其分布函数.f(x)=e^-x,x>0;0,x为其余对应的分布函数为
提示:EY=E(X+e^(-2X))=EX+E(e^-2X)前面的EX=1,后面的式子根据期望的定义式.求出不理解,可以继续提问再问:指数的f(x)是什么?再答:x>0时f(x)=e^xx
F(y)=P(Y≤y)=P(1-exp(-2X)≤y)=P(X≤-ln(1-y)/2)=∫[0,-ln(1-y)/2]2exp(-2x)dx=y0
P(X>1)=e^(-λ)=e^(-2),则λ=2
1、大于1的概率就是p(x>1),用密度函数在1到正无穷积分就行了,其实也就是1-F(1)2、其实就是做伯努利实验,服从二项分布,参数为(n,p),p就是前面1求出来的值.至少有两次,把两次的和三次的
/>∵X服从参数为1的指数分布,∴X的概率密度函数f(x)=e-x,x>00,x≤0,且EX=1,DX=1,∴Ee-2x=∫+∞0e-2x•e-xdx=-13e-3x|+∞0=13,于是:E(X+e-
P(Y=0)=P(X>1)=e^(-1)P(Y=1)=P(X