参数为λ的泊松分布的样本,写出样本联合分布律
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 00:08:02
如果λ=8那答案就是对的
λ(poisson分布参数)的意义λ表示在一定时间(单位时间)内事件发生的平均次数.例如在一天内访问某个商场的人数服从poisson分布,并且估计出平均人数为x人,这里poisson分布的参数就是平均
E(5X-1)=5EX-1=9->EX=λ=2期望的基本性质,和泊松分布的期望公式而已.
这个用泊松分布可加性来做,很简单X,Y相互独立且分别服从p(λ1),p(λ2)那么Z=X+Yp(λ1+λ2)参考资料里有他的证明
要用到微积分吗?具体公式给下回答:=Σ(3^I*e^(-3)I/I!)(3^(K-I)*e^(-3)I/(K-I)!)=Σ(3^I*3^(K-I)e^(-3)*e^(-3)/I!*(K-I)!)=Σ[
X服从参数为λ的泊松分布,EX=λ.把EX换成一阶样本矩Xˉ,即得矩估计量为λ^=Xˉ.
泊松分布只有参数:λ------单位时间内到来的平均个数.比如说平均每小时来五辆车.则λ=5
相互独立且服从参数为λ1,λ2的泊松分布
Yn的极限应该是6吧.这里的Yn其实就是样本的二阶原点矩,记为A2.其一阶原点矩为1/n(X1+X2+……+Xn),记为A1.其二阶中心矩记为S^2.它们之间的关系为A2-A1^2=S^2.又因为X服
概率论我已经忘光光了……
样本均值的方差等于总体方差除样本数20.总体方差=参数10
首先写出似然函数LL=∏p(xi)=∏{[(λ^xi)/(xi!)]·e^(-λ)}=e^(-nλ)·∏{[(λ^xi)/(xi!)]=e^(-nλ)·λ^(∑xi)·∏1/(xi!)然后对似然函数取
求证什么?看不懂你的意思 你把题目打清楚点,我看看 就算这个统计量的方差是否是λ这里有
lambda
指数分布是第一个参数为1的Gamma分布,而poisson分布具有可加性,Gamma分布(对第一个参数)也具有可加性,然后再根据样本均值和分布函数的定义即可求出所要的分布函数…(公式就不写啦,在手机上
样本与总体同分步,也是P(λ),这是数理统计的规定.希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮,
π(a)π(b)π(a)π(b)为柏松分布则P{X=k}=(a^k)e^(-a)/k!P{Y=m}=(b^m)e^(-b)/m!k,m=0,1,2.因为X,Y相互独立则他们的联合分布P{X=k,Y=m
所谓估计就是用样本的值来近似代替总体中未知参数的值,所以:既然λ的似然估计是X的均值,那它平方是的似然估计就是样本均值的平方.极大似然估计